mirror of
				https://github.com/Z3Prover/z3
				synced 2025-11-04 05:19:11 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			127 lines
		
	
	
	
		
			3.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			127 lines
		
	
	
	
		
			3.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
############################################
 | 
						|
# Copyright (c) 2012 Microsoft Corporation
 | 
						|
# 
 | 
						|
# Complex numbers in Z3
 | 
						|
# See http://research.microsoft.com/en-us/um/people/leonardo/blog/2013/01/26/complex.html 
 | 
						|
#
 | 
						|
# Author: Leonardo de Moura (leonardo)
 | 
						|
############################################
 | 
						|
from __future__ import print_function
 | 
						|
import sys
 | 
						|
if sys.version_info.major >= 3:
 | 
						|
    from functools import reduce
 | 
						|
from z3 import *
 | 
						|
 | 
						|
def _to_complex(a):
 | 
						|
    if isinstance(a, ComplexExpr):
 | 
						|
        return a
 | 
						|
    else:
 | 
						|
        return ComplexExpr(a, RealVal(0))
 | 
						|
 | 
						|
def _is_zero(a):
 | 
						|
    return (isinstance(a, int) and a == 0) or (is_rational_value(a) and a.numerator_as_long() == 0)
 | 
						|
 | 
						|
class ComplexExpr:
 | 
						|
    def __init__(self, r, i):
 | 
						|
        self.r = r
 | 
						|
        self.i = i
 | 
						|
 | 
						|
    def __add__(self, other):
 | 
						|
        other = _to_complex(other)
 | 
						|
        return ComplexExpr(self.r + other.r, self.i + other.i)
 | 
						|
 | 
						|
    def __radd__(self, other):
 | 
						|
        other = _to_complex(other)
 | 
						|
        return ComplexExpr(other.r + self.r, other.i + self.i)
 | 
						|
 | 
						|
    def __sub__(self, other):
 | 
						|
        other = _to_complex(other)
 | 
						|
        return ComplexExpr(self.r - other.r, self.i - other.i)
 | 
						|
 | 
						|
    def __rsub__(self, other):
 | 
						|
        other = _to_complex(other)
 | 
						|
        return ComplexExpr(other.r - self.r, other.i - self.i)
 | 
						|
 | 
						|
    def __mul__(self, other):
 | 
						|
        other = _to_complex(other)
 | 
						|
        return ComplexExpr(self.r*other.r - self.i*other.i, self.r*other.i + self.i*other.r)
 | 
						|
 | 
						|
    def __mul__(self, other):
 | 
						|
        other = _to_complex(other)
 | 
						|
        return ComplexExpr(other.r*self.r - other.i*self.i, other.i*self.r + other.r*self.i)
 | 
						|
 | 
						|
    def __pow__(self, k):
 | 
						|
        if k == 0:
 | 
						|
            return ComplexExpr(1, 0)
 | 
						|
        if k == 1:
 | 
						|
            return self
 | 
						|
        if k < 0:
 | 
						|
            return (self ** (-k)).inv()
 | 
						|
        return reduce(lambda x, y: x * y, [self for _ in range(k)], ComplexExpr(1, 0))
 | 
						|
 | 
						|
    def inv(self):
 | 
						|
        den = self.r*self.r + self.i*self.i
 | 
						|
        return ComplexExpr(self.r/den, -self.i/den)
 | 
						|
 | 
						|
    def __div__(self, other):
 | 
						|
        inv_other = _to_complex(other).inv()
 | 
						|
        return self.__mul__(inv_other)
 | 
						|
 | 
						|
    if sys.version_info.major >= 3:
 | 
						|
      # In python 3 the meaning of the '/' operator
 | 
						|
      # was changed.
 | 
						|
      def __truediv__(self, other):
 | 
						|
        return self.__div__(other)
 | 
						|
 | 
						|
    def __rdiv__(self, other):
 | 
						|
        other = _to_complex(other)
 | 
						|
        return self.inv().__mul__(other)
 | 
						|
 | 
						|
    def __eq__(self, other):
 | 
						|
        other = _to_complex(other)
 | 
						|
        return And(self.r == other.r, self.i == other.i)
 | 
						|
 | 
						|
    def __neq__(self, other):
 | 
						|
        return Not(self.__eq__(other))
 | 
						|
 | 
						|
    def simplify(self):
 | 
						|
        return ComplexExpr(simplify(self.r), simplify(self.i))
 | 
						|
 | 
						|
    def repr_i(self):
 | 
						|
        if is_rational_value(self.i):
 | 
						|
            return "%s*I" % self.i
 | 
						|
        else:
 | 
						|
            return "(%s)*I" % str(self.i)
 | 
						|
 | 
						|
    def __repr__(self):
 | 
						|
        if _is_zero(self.i):
 | 
						|
            return str(self.r)
 | 
						|
        elif _is_zero(self.r):
 | 
						|
            return self.repr_i()
 | 
						|
        else:
 | 
						|
            return "%s + %s" % (self.r, self.repr_i())
 | 
						|
 | 
						|
def Complex(a):
 | 
						|
    return ComplexExpr(Real('%s.r' % a), Real('%s.i' % a))
 | 
						|
I = ComplexExpr(RealVal(0), RealVal(1))
 | 
						|
 | 
						|
def evaluate_cexpr(m, e):
 | 
						|
    return ComplexExpr(m[e.r], m[e.i])
 | 
						|
 | 
						|
x = Complex("x")
 | 
						|
s = Tactic('qfnra-nlsat').solver()
 | 
						|
s.add(x*x == -2)
 | 
						|
print(s)
 | 
						|
print(s.check())
 | 
						|
m = s.model()
 | 
						|
print('x = %s' % evaluate_cexpr(m, x))
 | 
						|
print((evaluate_cexpr(m,x)*evaluate_cexpr(m,x)).simplify())
 | 
						|
s.add(x.i != -1)
 | 
						|
print(s)
 | 
						|
print(s.check())
 | 
						|
print(s.model())
 | 
						|
s.add(x.i != 1)
 | 
						|
print(s.check())
 | 
						|
# print(s.model())
 | 
						|
print(((3 + I) ** 2)/(5 - I))
 | 
						|
print(((3 + I) ** -3)/(5 - I))
 |