3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-13 04:28:17 +00:00
z3/src/ast/sls/sls_euf_plugin.cpp
2025-01-28 15:04:13 -08:00

408 lines
14 KiB
C++

/*++
Copyright (c) 2024 Microsoft Corporation
Module Name:
sls_euf_plugin.cpp
Abstract:
Congruence Closure for SLS
Author:
Nikolaj Bjorner (nbjorner) 2024-06-24
Todo:
- try determining plateau moves.
- try generally a model rotation move.
--*/
#include "ast/sls/sls_euf_plugin.h"
#include "ast/ast_ll_pp.h"
#include "ast/ast_pp.h"
#include "params/sls_params.hpp"
namespace sls {
euf_plugin::euf_plugin(context& c):
plugin(c),
m_values(8U, value_hash(*this), value_eq(*this)) {
m_fid = user_sort_family_id;
}
euf_plugin::~euf_plugin() {}
void euf_plugin::initialize() {
}
void euf_plugin::start_propagation() {
m_g = alloc(euf::egraph, m);
std::function<void(std::ostream&, void*)> dj = [&](std::ostream& out, void* j) {
out << "lit " << to_literal(reinterpret_cast<size_t*>(j));
};
m_g->set_display_justification(dj);
init_egraph(*m_g, true);
}
void euf_plugin::register_term(expr* e) {
if (!is_app(e))
return;
app* a = to_app(e);
if (a->get_num_args() == 0)
return;
if (!is_uninterp(e)) {
return;
family_id fid = a->get_family_id();
if (fid == basic_family_id)
return;
if (all_of(*a, [&](expr* arg) { return !is_app(arg) || fid == to_app(arg)->get_family_id(); }))
return;
}
auto f = a->get_decl();
if (!m_app.contains(f))
m_app.insert(f, ptr_vector<app>());
m_app[f].push_back(a);
}
unsigned euf_plugin::value_hash::operator()(app* t) const {
unsigned r = 0;
for (auto arg : *t)
r *= 3, r += cc.ctx.get_value(arg)->hash();
return r;
}
bool euf_plugin::value_eq::operator()(app* a, app* b) const {
SASSERT(a->get_num_args() == b->get_num_args());
for (unsigned i = a->get_num_args(); i-- > 0; )
if (cc.ctx.get_value(a->get_arg(i)) != cc.ctx.get_value(b->get_arg(i)))
return false;
return true;
}
sat::literal euf_plugin::resolve_conflict() {
auto& g = *m_g;
SASSERT(g.inconsistent());
++m_stats.m_num_conflicts;
unsigned n = 0;
sat::literal_vector lits;
sat::literal flit = sat::null_literal;
ptr_vector<size_t> explain;
g.begin_explain();
g.explain<size_t>(explain, nullptr);
g.end_explain();
double reward = -1;
TRACE("euf",
for (auto p : explain) {
sat::literal l = to_literal(p);
tout << l << " " << mk_pp(ctx.atom(l.var()), m) << " " << ctx.is_unit(l) << "\n";
});
for (auto p : explain) {
sat::literal l = to_literal(p);
CTRACE("euf", !ctx.is_true(l), tout << "not true " << l << "\n"; ctx.display(tout););
SASSERT(ctx.is_true(l));
if (ctx.is_unit(l))
continue;
if (!lits.contains(~l))
lits.push_back(~l);
if (ctx.reward(l.var()) > reward)
n = 0, reward = ctx.reward(l.var());
if (ctx.rand(++n) == 0)
flit = l;
}
// flip the last literal on the replay stack
IF_VERBOSE(10, verbose_stream() << "sls.euf - flip " << flit << "\n");
log_clause(lits);
ctx.add_clause(lits);
return flit;
}
void euf_plugin::log_clause(sat::literal_vector const& lits) {
IF_VERBOSE(3, verbose_stream() << "block " << lits << "\n";
for (auto lit : lits)
verbose_stream() << (lit.sign() ? "~" : "") << mk_bounded_pp(ctx.atom(lit.var()), m) << "\n";
verbose_stream() << "\n";
);
}
void euf_plugin::propagate_literal(sat::literal lit) {
SASSERT(ctx.is_true(lit));
auto e = ctx.atom(lit.var());
expr* x, * y;
if (!e)
return;
auto block = [&](euf::enode* a, euf::enode* b) {
TRACE("euf", tout << "block " << m_g->bpp(a) << " != " << m_g->bpp(b) << "\n");
if (a->get_root() != b->get_root())
return;
ptr_vector<size_t> explain;
m_g->explain_eq<size_t>(explain, nullptr, a, b);
m_g->end_explain();
unsigned n = 1;
sat::literal_vector lits;
sat::literal flit = sat::null_literal;
if (!ctx.is_unit(lit)) {
flit = lit;
lits.push_back(~lit);
}
for (auto p : explain) {
sat::literal l = to_literal(p);
if (!ctx.is_true(l))
return;
if (ctx.is_unit(l))
continue;
lits.push_back(~l);
if (ctx.rand(++n) == 0)
flit = l;
}
ctx.add_clause(lits);
++m_stats.m_num_conflicts;
if (flit != sat::null_literal)
ctx.flip(flit.var());
log_clause(lits);
};
if (lit.sign() && m.is_eq(e, x, y))
block(m_g->find(x), m_g->find(y));
else if (!lit.sign() && m.is_distinct(e)) {
auto n = to_app(e)->get_num_args();
for (unsigned i = 0; i < n; ++i) {
auto a = m_g->find(to_app(e)->get_arg(i));
for (unsigned j = i + 1; j < n; ++j) {
auto b = m_g->find(to_app(e)->get_arg(j));
block(a, b);
}
}
}
else if (lit.sign()) {
auto a = m_g->find(e);
auto b = m_g->find(m.mk_true());
block(a, b);
}
}
void euf_plugin::init_egraph(euf::egraph& g, bool merge_eqs) {
ptr_vector<euf::enode> args;
for (auto t : ctx.subterms()) {
args.reset();
if (is_app(t))
for (auto* arg : *to_app(t))
args.push_back(g.find(arg));
g.mk(t, 0, args.size(), args.data());
}
if (!g.find(m.mk_true()))
g.mk(m.mk_true(), 0, 0, nullptr);
if (!g.find(m.mk_false()))
g.mk(m.mk_false(), 0, 0, nullptr);
// check for conflict with disequalities during propagation
if (merge_eqs) {
TRACE("euf", tout << "root literals " << ctx.root_literals() << "\n");
for (auto lit : ctx.root_literals()) {
if (!ctx.is_true(lit))
lit.neg();
auto e = ctx.atom(lit.var());
expr* x, * y;
if (e && m.is_eq(e, x, y) && !lit.sign())
g.merge(g.find(x), g.find(y), to_ptr(lit));
else if (!lit.sign())
g.merge(g.find(e), g.find(m.mk_true()), to_ptr(lit));
}
g.propagate();
if (g.inconsistent())
resolve_conflict();
}
typedef obj_map<sort, unsigned> map1;
typedef obj_map<euf::enode, expr*> map2;
m_num_elems = alloc(map1);
m_root2value = alloc(map2);
m_pinned = alloc(expr_ref_vector, m);
for (auto n : g.nodes()) {
if (n->is_root() && is_user_sort(n->get_sort())) {
// verbose_stream() << "init root " << g.pp(n) << "\n";
unsigned num = 0;
m_num_elems->find(n->get_sort(), num);
expr* v = m.mk_model_value(num, n->get_sort());
m_pinned->push_back(v);
m_root2value->insert(n, v);
m_num_elems->insert(n->get_sort(), num + 1);
}
}
}
expr_ref euf_plugin::get_value(expr* e) {
if (m.is_model_value(e))
return expr_ref(e, m);
if (!m_g) {
m_g = alloc(euf::egraph, m);
init_egraph(*m_g, true);
}
auto n = m_g->find(e)->get_root();
VERIFY(m_root2value->find(n, e));
return expr_ref(e, m);
}
bool euf_plugin::include_func_interp(func_decl* f) const {
return is_uninterp(f) && f->get_arity() > 0;
}
bool euf_plugin::is_sat() {
for (auto& [f, ts] : m_app) {
if (ts.size() <= 1)
continue;
m_values.reset();
for (auto* t : ts) {
app* u;
if (!ctx.is_relevant(t))
continue;
if (m_values.find(t, u)) {
if (ctx.get_value(t) != ctx.get_value(u))
return false;
}
else
m_values.insert(t);
}
}
// validate_model();
return true;
}
void euf_plugin::validate_model() {
auto& g = *m_g;
for (auto lit : ctx.root_literals()) {
euf::enode* a = nullptr, * b = nullptr;
if (!ctx.is_true(lit))
continue;
auto e = ctx.atom(lit.var());
if (!e)
continue;
if (!ctx.is_relevant(e))
continue;
if (m.is_distinct(e))
continue;
if (m.is_eq(e)) {
a = g.find(to_app(e)->get_arg(0));
b = g.find(to_app(e)->get_arg(1));
}
if (lit.sign() && m.is_eq(e)) {
if (a->get_root() == b->get_root()) {
IF_VERBOSE(0, verbose_stream() << "not disequal " << lit << " " << mk_pp(e, m) << "\n");
ctx.display(verbose_stream());
UNREACHABLE();
}
}
else if (!lit.sign() && m.is_eq(e)) {
if (a->get_root() != b->get_root()) {
IF_VERBOSE(0, verbose_stream() << "not equal " << lit << " " << mk_pp(e, m) << "\n");
//UNREACHABLE();
}
}
else if (to_app(e)->get_family_id() != basic_family_id && lit.sign() && g.find(e)->get_root() != g.find(m.mk_false())->get_root()) {
IF_VERBOSE(0, verbose_stream() << "not alse " << lit << " " << mk_pp(e, m) << "\n");
//UNREACHABLE();
}
else if (to_app(e)->get_family_id() != basic_family_id && !lit.sign() && g.find(e)->get_root() != g.find(m.mk_true())->get_root()) {
IF_VERBOSE(0, verbose_stream() << "not true " << lit << " " << mk_pp(e, m) << "\n");
//UNREACHABLE();
}
}
}
bool euf_plugin::propagate() {
bool new_constraint = false;
for (auto & [f, ts] : m_app) {
if (ts.size() <= 1)
continue;
m_values.reset();
for (auto * t : ts) {
app* u;
if (!ctx.is_relevant(t))
continue;
if (m_values.find(t, u)) {
if (ctx.get_value(t) == ctx.get_value(u))
continue;
expr_ref_vector ors(m);
for (unsigned i = t->get_num_args(); i-- > 0; )
ors.push_back(m.mk_not(m.mk_eq(t->get_arg(i), u->get_arg(i))));
ors.push_back(m.mk_eq(t, u));
#if 0
verbose_stream() << "conflict: " << mk_bounded_pp(t, m) << " != " << mk_bounded_pp(u, m) << "\n";
verbose_stream() << "value " << ctx.get_value(t) << " != " << ctx.get_value(u) << "\n";
for (unsigned i = t->get_num_args(); i-- > 0; )
verbose_stream() << ctx.get_value(t->get_arg(i)) << " == " << ctx.get_value(u->get_arg(i)) << "\n";
#endif
expr_ref fml(m.mk_or(ors), m);
if (ctx.add_constraint(fml))
new_constraint = true;
}
else
m_values.insert(t);
}
}
for (auto lit : ctx.root_literals()) {
if (!ctx.is_true(lit))
continue;
auto e = ctx.atom(lit.var());
if (lit.sign() && e && m.is_distinct(e)) {
auto n = to_app(e)->get_num_args();
expr_ref_vector eqs(m);
for (unsigned i = 0; i < n; ++i) {
auto a = m_g->find(to_app(e)->get_arg(i));
for (unsigned j = i + 1; j < n; ++j) {
auto b = m_g->find(to_app(e)->get_arg(j));
if (a->get_root() == b->get_root())
goto done_distinct;
eqs.push_back(m.mk_eq(a->get_expr(), b->get_expr()));
}
}
// distinct(a, b, c) or a = b or a = c or b = c
eqs.push_back(e);
if (ctx.add_constraint(m.mk_or(eqs)))
new_constraint = true;
done_distinct:
;
}
}
return new_constraint;
}
std::ostream& euf_plugin::display(std::ostream& out) const {
if (m_g)
m_g->display(out);
for (auto& [f, ts] : m_app) {
for (auto* t : ts)
out << mk_bounded_pp(t, m) << "\n";
out << "\n";
}
return out;
}
void euf_plugin::collect_statistics(statistics& st) const {
st.update("sls-euf-conflict", m_stats.m_num_conflicts);
}
void euf_plugin::reset_statistics() {
m_stats.reset();
}
}