3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-08-18 09:12:16 +00:00
z3/src/opt/bcd2.cpp

405 lines
14 KiB
C++

/*++
Copyright (c) 2014 Microsoft Corporation
Module Name:
bcd2.cpp
Abstract:
bcd2 based MaxSAT.
Author:
Nikolaj Bjorner (nbjorner) 2014-4-17
Notes:
--*/
#include "bcd2.h"
#include "pb_decl_plugin.h"
#include "uint_set.h"
#include "ast_pp.h"
namespace opt {
// ------------------------------------------------------
// Morgado, Heras, Marques-Silva 2013
// (initial version without model-based optimizations)
//
class bcd2 : public maxsmt_solver_base {
struct wcore {
expr* m_r;
unsigned_vector m_R;
rational m_lower;
rational m_mid;
rational m_upper;
};
typedef obj_hashtable<expr> expr_set;
pb_util pb;
expr_ref_vector m_soft_aux;
obj_map<expr, unsigned> m_relax2index; // expr |-> index
obj_map<expr, unsigned> m_soft2index; // expr |-> index
expr_ref_vector m_trail;
expr_ref_vector m_soft_constraints;
expr_set m_asm_set;
vector<wcore> m_cores;
vector<rational> m_sigmas;
rational m_den; // least common multiplier of original denominators
bool m_enable_lazy; // enable adding soft constraints lazily (called 'mgbcd2')
unsigned_vector m_lazy_soft; // soft constraints to add lazily.
void set2asms(expr_set const& set, expr_ref_vector & es) const {
es.reset();
expr_set::iterator it = set.begin(), end = set.end();
for (; it != end; ++it) {
es.push_back(m.mk_not(*it));
}
}
void bcd2_init_soft(weights_t& weights, expr_ref_vector const& soft) {
// normalize weights to be integral:
m_den = rational::one();
for (unsigned i = 0; i < m_weights.size(); ++i) {
m_den = lcm(m_den, denominator(m_weights[i]));
}
if (!m_den.is_one()) {
for (unsigned i = 0; i < m_weights.size(); ++i) {
m_weights[i] = m_den*m_weights[i];
SASSERT(m_weights[i].is_int());
}
}
}
void init_bcd() {
m_trail.reset();
m_asm_set.reset();
m_cores.reset();
m_sigmas.reset();
m_lazy_soft.reset();
for (unsigned i = 0; i < m_soft.size(); ++i) {
m_sigmas.push_back(m_weights[i]);
m_soft_aux.push_back(mk_fresh());
if (m_enable_lazy) {
m_lazy_soft.push_back(i);
}
else {
enable_soft_constraint(i);
}
}
m_upper += rational(1);
}
void process_sat() {
svector<bool> assignment;
update_assignment(assignment);
if (check_lazy_soft(assignment)) {
update_sigmas();
}
}
public:
bcd2(maxsat_context& c,
weights_t& ws, expr_ref_vector const& soft):
maxsmt_solver_base(c, ws, soft),
pb(m),
m_soft_aux(m),
m_trail(m),
m_soft_constraints(m),
m_enable_lazy(true) {
bcd2_init_soft(ws, soft);
}
virtual ~bcd2() {}
virtual lbool operator()() {
expr_ref fml(m), r(m);
lbool is_sat = l_undef;
expr_ref_vector asms(m);
init();
init_bcd();
if (m.canceled()) {
normalize_bounds();
return l_undef;
}
process_sat();
while (m_lower < m_upper) {
trace_bounds("bcd2");
assert_soft();
solver::scoped_push _scope2(s());
TRACE("opt", display(tout););
assert_cores();
set2asms(m_asm_set, asms);
if (m.canceled()) {
normalize_bounds();
return l_undef;
}
is_sat = s().check_sat(asms.size(), asms.c_ptr());
switch(is_sat) {
case l_undef:
normalize_bounds();
return l_undef;
case l_true:
process_sat();
break;
case l_false: {
ptr_vector<expr> unsat_core;
uint_set subC, soft;
s().get_unsat_core(unsat_core);
core2indices(unsat_core, subC, soft);
SASSERT(unsat_core.size() == subC.num_elems() + soft.num_elems());
if (soft.num_elems() == 0 && subC.num_elems() == 1) {
unsigned s = *subC.begin();
wcore& c_s = m_cores[s];
c_s.m_lower = refine(c_s.m_R, c_s.m_mid);
c_s.m_mid = div(c_s.m_lower + c_s.m_upper, rational(2));
}
else {
wcore c_s;
rational delta = min_of_delta(subC);
rational lower = sum_of_lower(subC);
union_Rs(subC, c_s.m_R);
r = mk_fresh();
relax(subC, soft, c_s.m_R, delta);
c_s.m_lower = refine(c_s.m_R, lower + delta - rational(1));
c_s.m_upper = rational::one();
c_s.m_upper += sum_of_sigmas(c_s.m_R);
c_s.m_mid = div(c_s.m_lower + c_s.m_upper, rational(2));
c_s.m_r = r;
m_asm_set.insert(r);
subtract(m_cores, subC);
m_relax2index.insert(r, m_cores.size());
m_cores.push_back(c_s);
}
break;
}
}
m_lower = compute_lower();
}
normalize_bounds();
return l_true;
}
private:
void enable_soft_constraint(unsigned i) {
expr_ref fml(m);
expr* r = m_soft_aux[i].get();
m_soft2index.insert(r, i);
fml = m.mk_or(r, m_soft[i]);
m_soft_constraints.push_back(fml);
m_asm_set.insert(r);
SASSERT(m_weights[i].is_int());
}
void assert_soft() {
for (unsigned i = 0; i < m_soft_constraints.size(); ++i) {
s().assert_expr(m_soft_constraints[i].get());
}
m_soft_constraints.reset();
}
bool check_lazy_soft(svector<bool> const& assignment) {
bool all_satisfied = true;
for (unsigned i = 0; i < m_lazy_soft.size(); ++i) {
unsigned j = m_lazy_soft[i];
if (!assignment[j]) {
enable_soft_constraint(j);
m_lazy_soft[i] = m_lazy_soft.back();
m_lazy_soft.pop_back();
--i;
all_satisfied = false;
}
}
return all_satisfied;
}
void normalize_bounds() {
m_lower /= m_den;
m_upper /= m_den;
}
expr* mk_fresh() {
expr* r = mk_fresh_bool("r");
m_trail.push_back(r);
return r;
}
void update_assignment(svector<bool>& new_assignment) {
expr_ref val(m);
rational new_upper(0);
model_ref model;
new_assignment.reset();
s().get_model(model);
for (unsigned i = 0; i < m_soft.size(); ++i) {
new_assignment.push_back(model->eval(m_soft[i], val) && m.is_true(val));
if (!new_assignment[i]) {
new_upper += m_weights[i];
}
}
if (new_upper < m_upper) {
m_upper = new_upper;
m_model = model;
m_assignment.reset();
m_assignment.append(new_assignment);
}
}
void update_sigmas() {
for (unsigned i = 0; i < m_cores.size(); ++i) {
wcore& c_i = m_cores[i];
unsigned_vector const& R = c_i.m_R;
c_i.m_upper.reset();
for (unsigned j = 0; j < R.size(); ++j) {
unsigned r_j = R[j];
if (!m_assignment[r_j]) {
c_i.m_upper += m_weights[r_j];
m_sigmas[r_j] = m_weights[r_j];
}
else {
m_sigmas[r_j].reset();
}
}
c_i.m_mid = div(c_i.m_lower + c_i.m_upper, rational(2));
}
}
/**
* Minimum of two (positive) numbers. Zero is treated as +infinity.
*/
rational min_z(rational const& a, rational const& b) {
if (a.is_zero()) return b;
if (b.is_zero()) return a;
if (a < b) return a;
return b;
}
rational min_of_delta(uint_set const& subC) {
rational delta(0);
for (uint_set::iterator it = subC.begin(); it != subC.end(); ++it) {
unsigned j = *it;
wcore const& core = m_cores[j];
rational new_delta = rational(1) + core.m_upper - core.m_mid;
SASSERT(new_delta.is_pos());
delta = min_z(delta, new_delta);
}
return delta;
}
rational sum_of_lower(uint_set const& subC) {
rational lower(0);
for (uint_set::iterator it = subC.begin(); it != subC.end(); ++it) {
lower += m_cores[*it].m_lower;
}
return lower;
}
rational sum_of_sigmas(unsigned_vector const& R) {
rational sum(0);
for (unsigned i = 0; i < R.size(); ++i) {
sum += m_sigmas[R[i]];
}
return sum;
}
void union_Rs(uint_set const& subC, unsigned_vector& R) {
for (uint_set::iterator it = subC.begin(); it != subC.end(); ++it) {
R.append(m_cores[*it].m_R);
}
}
rational compute_lower() {
rational result(0);
for (unsigned i = 0; i < m_cores.size(); ++i) {
result += m_cores[i].m_lower;
}
return result;
}
void subtract(vector<wcore>& cores, uint_set const& subC) {
unsigned j = 0;
for (unsigned i = 0; i < cores.size(); ++i) {
if (subC.contains(i)) {
m_asm_set.remove(cores[i].m_r);
}
else {
if (j != i) {
cores[j] = cores[i];
}
++j;
}
}
cores.resize(j);
for (unsigned i = 0; i < cores.size(); ++i) {
m_relax2index.insert(cores[i].m_r, i);
}
}
void core2indices(ptr_vector<expr> const& core, uint_set& subC, uint_set& soft) {
for (unsigned i = 0; i < core.size(); ++i) {
unsigned j;
expr* a;
VERIFY(m.is_not(core[i], a));
if (m_relax2index.find(a, j)) {
subC.insert(j);
}
else {
VERIFY(m_soft2index.find(a, j));
soft.insert(j);
}
}
}
rational refine(unsigned_vector const& idx, rational v) {
return v + rational(1);
}
void relax(uint_set& subC, uint_set& soft, unsigned_vector& R, rational& delta) {
for (uint_set::iterator it = soft.begin(); it != soft.end(); ++it) {
R.push_back(*it);
delta = min_z(delta, m_weights[*it]);
m_asm_set.remove(m_soft_aux[*it].get());
}
}
void assert_cores() {
for (unsigned i = 0; i < m_cores.size(); ++i) {
assert_core(m_cores[i]);
}
}
void assert_core(wcore const& core) {
expr_ref fml(m);
vector<rational> ws;
ptr_vector<expr> rs;
rational w(0);
for (unsigned j = 0; j < core.m_R.size(); ++j) {
unsigned idx = core.m_R[j];
ws.push_back(m_weights[idx]);
w += ws.back();
rs.push_back(m_soft_aux[idx].get());
}
w.neg();
w += core.m_mid;
ws.push_back(w);
rs.push_back(core.m_r);
fml = pb.mk_le(ws.size(), ws.c_ptr(), rs.c_ptr(), core.m_mid);
s().assert_expr(fml);
}
void display(std::ostream& out) {
out << "[" << m_lower << ":" << m_upper << "]\n";
s().display(out);
out << "\n";
for (unsigned i = 0; i < m_cores.size(); ++i) {
wcore const& c = m_cores[i];
out << mk_pp(c.m_r, m) << ": ";
for (unsigned j = 0; j < c.m_R.size(); ++j) {
out << c.m_R[j] << " (" << m_sigmas[c.m_R[j]] << ") ";
}
out << "[" << c.m_lower << ":" << c.m_mid << ":" << c.m_upper << "]\n";
}
for (unsigned i = 0; i < m_soft.size(); ++i) {
out << mk_pp(m_soft[i], m) << " " << m_weights[i] << "\n";
}
}
};
maxsmt_solver_base* mk_bcd2(
maxsat_context& c, weights_t& ws, expr_ref_vector const& soft) {
return alloc(bcd2, c, ws, soft);
}
}