3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-17 14:25:35 +00:00
z3/src/opt/maxhs.cpp
Nikolaj Bjorner 589626b738 moving to resource managed cancellation
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2015-12-12 19:30:23 +00:00

558 lines
19 KiB
C++

/*++
Copyright (c) 2014 Microsoft Corporation
Module Name:
maxhs.cpp
Abstract:
maxhs based MaxSAT.
Author:
Nikolaj Bjorner (nbjorner) 2014-4-17
Notes:
--*/
#include "optsmt.h"
#include "hitting_sets.h"
#include "stopwatch.h"
#include "ast_pp.h"
#include "model_smt2_pp.h"
#include "uint_set.h"
#include "maxhs.h"
#include "opt_context.h"
namespace opt {
class scoped_stopwatch {
double& m_time;
stopwatch m_watch;
public:
scoped_stopwatch(double& time): m_time(time) {
m_watch.start();
}
~scoped_stopwatch() {
m_watch.stop();
m_time += m_watch.get_seconds();
}
};
// ----------------------------------
// MaxSatHS+MSS
// variant of MaxSAT-HS (Algorithm 9)
// that also refines upper bound during progressive calls
// to the underlying optimization solver for the soft constraints.
//
class maxhs : public maxsmt_solver_base {
struct stats {
stats() { reset(); }
void reset() { memset(this, 0, sizeof(*this)); }
unsigned m_num_iterations;
unsigned m_num_core_reductions_success;
unsigned m_num_core_reductions_failure;
unsigned m_num_model_expansions_success;
unsigned m_num_model_expansions_failure;
double m_core_reduction_time;
double m_model_expansion_time;
double m_aux_sat_time;
double m_disjoint_cores_time;
};
hitting_sets m_hs;
expr_ref_vector m_aux; // auxiliary (indicator) variables.
obj_map<expr, unsigned> m_aux2index; // expr |-> index
unsigned_vector m_core_activity; // number of times soft constraint is used in a core.
svector<bool> m_seed; // clause selected in current model.
svector<bool> m_aux_active; // active soft clauses.
ptr_vector<expr> m_asms; // assumptions (over aux)
stats m_stats;
bool m_at_lower_bound;
public:
maxhs(maxsat_context& c, weights_t& ws, expr_ref_vector const& soft):
maxsmt_solver_base(c, ws, soft),
m_hs(m.limit()),
m_aux(m),
m_at_lower_bound(false) {
}
virtual ~maxhs() {}
virtual void collect_statistics(statistics& st) const {
maxsmt_solver_base::collect_statistics(st);
m_hs.collect_statistics(st);
st.update("maxhs-num-iterations", m_stats.m_num_iterations);
st.update("maxhs-num-core-reductions-n", m_stats.m_num_core_reductions_failure);
st.update("maxhs-num-core-reductions-y", m_stats.m_num_core_reductions_success);
st.update("maxhs-num-model-expansions-n", m_stats.m_num_model_expansions_failure);
st.update("maxhs-num-model-expansions-y", m_stats.m_num_model_expansions_success);
st.update("maxhs-core-reduction-time", m_stats.m_core_reduction_time);
st.update("maxhs-model-expansion-time", m_stats.m_model_expansion_time);
st.update("maxhs-aux-sat-time", m_stats.m_aux_sat_time);
st.update("maxhs-disj-core-time", m_stats.m_disjoint_cores_time);
}
lbool operator()() {
ptr_vector<expr> hs;
init();
init_local();
if (!disjoint_cores(hs)) {
return l_undef;
}
seed2assumptions();
while (m_lower < m_upper) {
++m_stats.m_num_iterations;
trace_bounds("maxhs");
TRACE("opt", tout << "(maxhs [" << m_lower << ":" << m_upper << "])\n";);
if (m.canceled()) {
return l_undef;
}
lbool core_found = generate_cores(hs);
switch(core_found) {
case l_undef:
return l_undef;
case l_true: {
lbool is_sat = next_seed();
switch(is_sat) {
case l_true:
seed2hs(false, hs);
break;
case l_false:
TRACE("opt", tout << "no more seeds\n";);
IF_VERBOSE(1, verbose_stream() << "(opt.maxhs.no-more-seeds)\n";);
m_lower = m_upper;
return l_true;
case l_undef:
return l_undef;
}
break;
}
case l_false:
IF_VERBOSE(1, verbose_stream() << "(opt.maxhs.no-more-cores)\n";);
TRACE("opt", tout << "no more cores\n";);
m_lower = m_upper;
return l_true;
}
}
return l_true;
}
private:
unsigned num_soft() const { return m_soft.size(); }
void init_local() {
unsigned sz = num_soft();
app_ref fml(m), obj(m);
expr_ref_vector sum(m);
m_asms.reset();
m_seed.reset();
m_aux.reset();
m_aux_active.reset();
m_aux2index.reset();
m_core_activity.reset();
for (unsigned i = 0; i < sz; ++i) {
bool tt = is_true(m_model, m_soft[i]);
m_seed.push_back(tt);
m_aux. push_back(mk_fresh(m.mk_bool_sort()));
m_aux_active.push_back(false);
m_core_activity.push_back(0);
m_aux2index.insert(m_aux.back(), i);
if (tt) {
m_asms.push_back(m_aux.back());
ensure_active(i);
}
}
for (unsigned i = 0; i < m_weights.size(); ++i) {
m_hs.add_weight(m_weights[i]);
}
TRACE("opt", print_seed(tout););
}
void hs2seed(ptr_vector<expr> const& hs) {
for (unsigned i = 0; i < num_soft(); ++i) {
m_seed[i] = true;
}
for (unsigned i = 0; i < hs.size(); ++i) {
m_seed[m_aux2index.find(hs[i])] = false;
}
TRACE("opt",
print_asms(tout << "hitting set: ", hs);
print_seed(tout););
}
void seed2hs(bool pos, ptr_vector<expr>& hs) {
hs.reset();
for (unsigned i = 0; i < num_soft(); ++i) {
if (pos == m_seed[i]) {
hs.push_back(m_aux[i].get());
}
}
TRACE("opt",
print_asms(tout << "hitting set: ", hs);
print_seed(tout););
}
void seed2assumptions() {
seed2hs(true, m_asms);
}
//
// Find disjoint cores for soft constraints.
//
bool disjoint_cores(ptr_vector<expr>& hs) {
scoped_stopwatch _sw(m_stats.m_disjoint_cores_time);
m_asms.reset();
svector<bool> active(num_soft(), true);
rational lower(0);
update_assumptions(active, lower, hs);
SASSERT(lower.is_zero());
while (true) {
lbool is_sat = s().check_sat(m_asms.size(), m_asms.c_ptr());
switch (is_sat) {
case l_true:
if (lower > m_lower) {
m_lower = lower;
}
return true;
case l_false:
if (!shrink()) return false;
block_up();
update_assumptions(active, lower, hs);
break;
case l_undef:
return false;
}
}
}
void update_assumptions(svector<bool>& active, rational& lower, ptr_vector<expr>& hs) {
rational arg_min(0);
expr* e = 0;
for (unsigned i = 0; i < m_asms.size(); ++i) {
unsigned index = m_aux2index.find(m_asms[i]);
active[index] = false;
if (arg_min.is_zero() || arg_min > m_weights[index]) {
arg_min = m_weights[index];
e = m_asms[i];
}
}
if (e) {
hs.push_back(e);
lower += arg_min;
}
m_asms.reset();
for (unsigned i = 0; i < num_soft(); ++i) {
if (active[i]) {
m_asms.push_back(m_aux[i].get());
ensure_active(i);
}
}
}
//
// Auxiliary Algorithm 10 for producing cores.
//
lbool generate_cores(ptr_vector<expr>& hs) {
bool core = !m_at_lower_bound;
while (true) {
hs2seed(hs);
lbool is_sat = check_subset();
switch(is_sat) {
case l_undef:
return l_undef;
case l_true:
if (!grow()) return l_undef;
block_down();
return core?l_true:l_false;
case l_false:
core = true;
if (!shrink()) return l_undef;
block_up();
find_non_optimal_hitting_set(hs);
break;
}
}
}
struct lt_activity {
maxhs& hs;
lt_activity(maxhs& hs):hs(hs) {}
bool operator()(expr* a, expr* b) const {
unsigned w1 = hs.m_core_activity[hs.m_aux2index.find(a)];
unsigned w2 = hs.m_core_activity[hs.m_aux2index.find(b)];
return w1 < w2;
}
};
//
// produce the non-optimal hitting set by using the 10% heuristic.
// of most active cores constraints.
// m_asms contains the current core.
//
void find_non_optimal_hitting_set(ptr_vector<expr>& hs) {
std::sort(m_asms.begin(), m_asms.end(), lt_activity(*this));
for (unsigned i = m_asms.size(); i > 9*m_asms.size()/10;) {
--i;
hs.push_back(m_asms[i]);
}
}
//
// retrieve the next seed that satisfies state of hs.
// state of hs must be satisfiable before optimization is called.
//
lbool next_seed() {
scoped_stopwatch _sw(m_stats.m_aux_sat_time);
TRACE("opt", tout << "\n";);
// min c_i*(not x_i) for x_i are soft clauses.
// max c_i*x_i for x_i are soft clauses
m_at_lower_bound = false;
lbool is_sat = m_hs.compute_upper();
if (is_sat == l_true) {
is_sat = m_hs.compute_lower();
}
if (is_sat == l_true) {
m_at_lower_bound = m_hs.get_upper() == m_hs.get_lower();
if (m_hs.get_lower() > m_lower) {
m_lower = m_hs.get_lower();
}
for (unsigned i = 0; i < num_soft(); ++i) {
m_seed[i] = is_active(i) && !m_hs.get_value(i);
}
TRACE("opt", print_seed(tout););
}
return is_sat;
}
//
// check assignment returned by HS with the original
// hard constraints.
//
lbool check_subset() {
TRACE("opt", tout << "\n";);
m_asms.reset();
for (unsigned i = 0; i < num_soft(); ++i) {
if (m_seed[i]) {
m_asms.push_back(m_aux[i].get());
ensure_active(i);
}
}
return s().check_sat(m_asms.size(), m_asms.c_ptr());
}
//
// extend the current assignment to one that
// satisfies as many soft constraints as possible.
// update the upper bound based on this assignment
//
bool grow() {
scoped_stopwatch _sw(m_stats.m_model_expansion_time);
model_ref mdl;
s().get_model(mdl);
for (unsigned i = 0; i < num_soft(); ++i) {
ensure_active(i);
m_seed[i] = false;
}
for (unsigned i = 0; i < m_asms.size(); ++i) {
m_seed[m_aux2index.find(m_asms[i])] = true;
}
for (unsigned i = 0; i < num_soft(); ++i) {
if (m_seed[i]) {
// already an assumption
}
else if (is_true(mdl, m_soft[i])) {
m_seed[i] = true;
m_asms.push_back(m_aux[i].get());
}
else {
m_asms.push_back(m_aux[i].get());
lbool is_sat = s().check_sat(m_asms.size(), m_asms.c_ptr());
switch(is_sat) {
case l_undef:
return false;
case l_false:
++m_stats.m_num_model_expansions_failure;
m_asms.pop_back();
break;
case l_true:
++m_stats.m_num_model_expansions_success;
s().get_model(mdl);
m_seed[i] = true;
break;
}
}
}
rational upper(0);
for (unsigned i = 0; i < num_soft(); ++i) {
if (!m_seed[i]) {
upper += m_weights[i];
}
}
if (upper < m_upper) {
m_upper = upper;
m_hs.set_upper(upper);
m_model = mdl;
m_assignment.reset();
m_assignment.append(m_seed);
TRACE("opt",
tout << "new upper: " << m_upper << "\n";
model_smt2_pp(tout, m, *(mdl.get()), 0););
}
DEBUG_CODE(
for (unsigned i = 0; i < num_soft(); ++i) {
SASSERT(is_true(mdl, m_soft[i]) == m_seed[i]);
});
return true;
}
//
// remove soft constraints from the current core.
//
bool shrink() {
scoped_stopwatch _sw(m_stats.m_core_reduction_time);
m_asms.reset();
s().get_unsat_core(m_asms);
TRACE("opt", print_asms(tout, m_asms););
obj_map<expr, unsigned> asm2index;
for (unsigned i = 0; i < m_asms.size(); ++i) {
asm2index.insert(m_asms[i], i);
}
obj_map<expr, unsigned>::iterator it = asm2index.begin(), end = asm2index.end();
for (; it != end; ++it) {
unsigned i = it->m_value;
if (i < m_asms.size()) {
expr* tmp = m_asms[i];
expr* back = m_asms.back();
m_asms[i] = back;
m_asms.pop_back();
lbool is_sat = s().check_sat(m_asms.size(), m_asms.c_ptr());
TRACE("opt", tout << "checking: " << mk_pp(tmp, m) << ": " << is_sat << "\n";);
switch(is_sat) {
case l_true:
++m_stats.m_num_core_reductions_failure;
// put back literal into core
m_asms.push_back(back);
m_asms[i] = tmp;
break;
case l_false:
// update the core
m_asms.reset();
++m_stats.m_num_core_reductions_success;
s().get_unsat_core(m_asms);
TRACE("opt", print_asms(tout, m_asms););
update_index(asm2index);
break;
case l_undef:
return false;
}
}
}
return true;
}
void print_asms(std::ostream& out, ptr_vector<expr> const& asms) {
for (unsigned j = 0; j < asms.size(); ++j) {
out << mk_pp(asms[j], m) << " ";
}
out << "\n";
}
void print_seed(std::ostream& out) {
out << "seed: ";
for (unsigned i = 0; i < num_soft(); ++i) {
out << (m_seed[i]?"1":"0");
}
out << "\n";
}
//
// must include some literal not from asms.
// (furthermore, update upper bound constraint in HS)
//
void block_down() {
uint_set indices;
unsigned_vector c_indices;
for (unsigned i = 0; i < m_asms.size(); ++i) {
indices.insert(m_aux2index.find(m_asms[i]));
}
for (unsigned i = 0; i < num_soft(); ++i) {
if (!indices.contains(i)) {
c_indices.push_back(i);
}
}
m_hs.add_exists_false(c_indices.size(), c_indices.c_ptr());
}
// should exclude some literal from core.
void block_up() {
unsigned_vector indices;
for (unsigned i = 0; i < m_asms.size(); ++i) {
unsigned index = m_aux2index.find(m_asms[i]);
m_core_activity[index]++;
indices.push_back(index);
}
m_hs.add_exists_true(indices.size(), indices.c_ptr());
}
void update_index(obj_map<expr, unsigned>& asm2index) {
obj_map<expr, unsigned>::iterator it = asm2index.begin(), end = asm2index.end();
for (; it != end; ++it) {
it->m_value = UINT_MAX;
}
for (unsigned i = 0; i < m_asms.size(); ++i) {
asm2index.find(m_asms[i]) = i;
}
}
app_ref mk_fresh(sort* s) {
app_ref r(m);
r = m.mk_fresh_const("r", s);
m_c.fm().insert(r->get_decl());
return r;
}
bool is_true(model_ref& mdl, expr* e) {
expr_ref val(m);
VERIFY(mdl->eval(e, val));
return m.is_true(val);
}
bool is_active(unsigned i) const {
return m_aux_active[i];
}
void ensure_active(unsigned i) {
if (!is_active(i)) {
expr_ref fml(m);
fml = m.mk_implies(m_aux[i].get(), m_soft[i]);
s().assert_expr(fml);
m_aux_active[i] = true;
}
}
};
maxsmt_solver_base* mk_maxhs(
maxsat_context& c, weights_t& ws, expr_ref_vector const& soft) {
return alloc(maxhs, c, ws, soft);
}
}