3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-12 04:03:39 +00:00
z3/src/opt/opt_lns.cpp
2024-02-07 23:06:43 -08:00

275 lines
8.9 KiB
C++

/*++
Copyright (c) 2014 Microsoft Corporation
Module Name:
opt_lns.cpp
Abstract:
"large" neighborhood search for maxsat problem instances.
Author:
Nikolaj Bjorner (nbjorner) 2021-02-01
--*/
#include "ast/ast_ll_pp.h"
#include "ast/ast_pp.h"
#include "ast/pb_decl_plugin.h"
#include "opt/maxsmt.h"
#include "opt/opt_lns.h"
#include "sat/sat_params.hpp"
#include <algorithm>
namespace opt {
lns::lns(solver& s, lns_context& ctx)
: m(s.get_manager()),
s(s),
ctx(ctx),
m_hardened(m),
m_unprocessed(m)
{}
void lns::set_lns_params() {
params_ref p;
p.set_sym("phase", symbol("frozen"));
p.set_uint("restart.initial", 1000000);
p.set_uint("max_conflicts", m_max_conflicts);
p.set_uint("simplify.delay", 1000000);
// p.set_bool("gc.burst", true);
s.updt_params(p);
}
void lns::save_defaults(params_ref& p) {
sat_params sp(p);
p.set_sym("phase", sp.phase());
p.set_uint("restart.initial", sp.restart_initial());
p.set_uint("max_conflicts", sp.max_conflicts());
p.set_uint("simplify.delay", sp.simplify_delay());
p.set_uint("gc.burst", sp.gc_burst());
}
unsigned lns::climb(model_ref& mdl) {
IF_VERBOSE(1, verbose_stream() << "(opt.lns :climb)\n");
m_num_improves = 0;
params_ref old_p(s.get_params());
save_defaults(old_p);
set_lns_params();
update_best_model(mdl);
for (unsigned i = 0; i < 2; ++i)
improve_bs();
IF_VERBOSE(1, verbose_stream() << "(opt.lns :relax-cores " << m_cores.size() << ")\n");
relax_cores();
s.updt_params(old_p);
IF_VERBOSE(1, verbose_stream() << "(opt.lns :num-improves " << m_num_improves << ")\n");
return m_num_improves;
}
void lns::update_best_model(model_ref& mdl) {
rational cost = ctx.cost(*mdl);
if (m_best_cost.is_zero() || m_best_cost >= cost) {
m_best_cost = cost;
m_best_model = mdl;
m_best_phase = s.get_phase();
m_best_bound = 0;
for (expr* e : ctx.soft())
if (!mdl->is_true(e))
m_best_bound += 1;
}
}
void lns::apply_best_model() {
s.set_phase(m_best_phase.get());
for (expr* e : m_unprocessed) {
s.move_to_front(e);
s.set_phase(e);
}
}
void lns::improve_bs() {
m_unprocessed.reset();
m_unprocessed.append(ctx.soft());
m_hardened.reset();
for (expr* a : ctx.soft())
m_is_assumption.mark(a);
shuffle(m_unprocessed.size(), m_unprocessed.data(), m_rand);
model_ref mdl = m_best_model->copy();
unsigned j = 0;
for (unsigned i = 0; i < m_unprocessed.size(); ++i) {
if (mdl->is_false(unprocessed(i))) {
expr_ref tmp(m_unprocessed.get(j), m);
m_unprocessed[j++] = m_unprocessed.get(i);
m_unprocessed[i] = tmp;
break;
}
}
for (unsigned i = j; i < m_unprocessed.size(); ++i) {
if (mdl->is_true(unprocessed(i))) {
expr_ref tmp(m_unprocessed.get(j), m);
m_unprocessed[j++] = m_unprocessed.get(i);
m_unprocessed[i] = tmp;
}
}
for (unsigned i = 0; i < 3 && !m_unprocessed.empty(); ++i)
improve_bs1();
}
void lns::improve_bs1() {
model_ref mdl = m_best_model->copy();
unsigned j = 0;
for (expr* e : m_unprocessed) {
if (!m.inc())
return;
if (mdl->is_true(e))
m_hardened.push_back(e);
else {
apply_best_model();
switch (improve_step(mdl, e)) {
case l_true:
m_hardened.push_back(e);
ctx.update_model(mdl);
update_best_model(mdl);
break;
case l_false:
m_hardened.push_back(m.mk_not(e));
break;
case l_undef:
m_unprocessed[j++] = e;
break;
}
}
}
m_unprocessed.shrink(j);
}
struct lns::scoped_bounding {
lns& m_lns;
bool m_cores_are_valid { true };
scoped_bounding(lns& l):m_lns(l) {
if (!m_lns.m_enable_scoped_bounding)
return;
if (m_lns.m_best_bound == 0)
return;
m_cores_are_valid = m_lns.m_cores_are_valid;
m_lns.m_cores_are_valid = false;
m_lns.s.push();
pb_util pb(m_lns.m);
expr_ref bound(pb.mk_at_most_k(m_lns.ctx.soft(), m_lns.m_best_bound - 1), m_lns.m);
m_lns.s.assert_expr(bound);
}
~scoped_bounding() {
if (!m_lns.m_enable_scoped_bounding)
return;
m_lns.m_cores_are_valid = m_cores_are_valid;
m_lns.s.pop(1);
}
};
void lns::relax_cores() {
if (!m_cores.empty() && m_cores_are_valid) {
std::sort(m_cores.begin(), m_cores.end(), [&](expr_ref_vector const& a, expr_ref_vector const& b) { return a.size() < b.size(); });
unsigned num_disjoint = 0;
vector<expr_ref_vector> new_cores;
for (auto const& c : m_cores) {
bool in_core = false;
for (auto* e : c)
in_core |= m_in_core.is_marked(e);
if (in_core)
continue;
for (auto* e : c)
m_in_core.mark(e);
new_cores.push_back(c);
++num_disjoint;
}
IF_VERBOSE(2, verbose_stream() << "num cores: " << m_cores.size() << " new cores: " << new_cores.size() << "\n");
ctx.relax_cores(new_cores);
}
m_in_core.reset();
m_is_assumption.reset();
m_cores.reset();
}
unsigned lns::improve_linear(model_ref& mdl) {
scoped_bounding _scoped_bounding(*this);
unsigned num_improved = 0;
unsigned max_conflicts = m_max_conflicts;
while (m.inc()) {
unsigned reward = improve_step(mdl);
if (reward == 0)
break;
num_improved += reward;
m_max_conflicts *= 3;
m_max_conflicts /= 2;
set_lns_params();
}
m_max_conflicts = max_conflicts;
return num_improved;
}
unsigned lns::improve_step(model_ref& mdl) {
unsigned num_improved = 0;
for (unsigned i = 0; m.inc() && i < m_unprocessed.size(); ++i) {
switch (improve_step(mdl, unprocessed(i))) {
case l_undef:
break;
case l_false:
TRACE("opt", tout << "pruned " << mk_bounded_pp(unprocessed(i), m) << "\n";);
m_hardened.push_back(m.mk_not(unprocessed(i)));
for (unsigned k = i; k + 1 < m_unprocessed.size(); ++k)
m_unprocessed[k] = unprocessed(k + 1);
m_unprocessed.pop_back();
--i;
break;
case l_true: {
unsigned k = 0, offset = 0;
for (unsigned j = 0; j < m_unprocessed.size(); ++j) {
if (mdl->is_true(unprocessed(j))) {
if (j <= i)
++offset;
++m_num_improves;
TRACE("opt", tout << "improved " << mk_bounded_pp(unprocessed(j), m) << "\n";);
m_hardened.push_back(unprocessed(j));
++num_improved;
}
else {
m_unprocessed[k++] = unprocessed(j);
}
}
m_unprocessed.shrink(k);
i -= offset;
IF_VERBOSE(1, verbose_stream() << "(opt.lns :num-improves " << m_num_improves << " :remaining-soft " << m_unprocessed.size() << ")\n");
ctx.update_model(mdl);
break;
}
}
}
return num_improved;
}
lbool lns::improve_step(model_ref& mdl, expr* e) {
m_hardened.push_back(e);
lbool r = s.check_sat(m_hardened);
m_hardened.pop_back();
if (r == l_true)
s.get_model(mdl);
if (r == l_false) {
expr_ref_vector core(m);
s.get_unsat_core(core);
bool all_assumed = true;
for (expr* c : core)
all_assumed &= m_is_assumption.is_marked(c);
IF_VERBOSE(2, verbose_stream() << "core " << all_assumed << " - " << core.size() << "\n");
if (all_assumed)
m_cores.push_back(core);
}
return r;
}
};