3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-12-12 22:56:23 +00:00
z3/src/math/polysat/umul_ovfl_constraint.cpp
2023-03-06 12:59:35 +01:00

203 lines
6.9 KiB
C++

/*++
Copyright (c) 2021 Microsoft Corporation
Module Name:
polysat multiplication overflow constraint
Author:
Jakob Rath, Nikolaj Bjorner (nbjorner) 2021-12-09
--*/
#include "math/polysat/umul_ovfl_constraint.h"
#include "math/polysat/solver.h"
namespace polysat {
umul_ovfl_constraint::umul_ovfl_constraint(pdd const& p, pdd const& q):
constraint(ckind_t::umul_ovfl_t), m_p(p), m_q(q) {
simplify();
m_vars.append(m_p.free_vars());
for (auto v : m_q.free_vars())
if (!m_vars.contains(v))
m_vars.push_back(v);
}
void umul_ovfl_constraint::simplify() {
if (m_p.is_zero() || m_q.is_zero() || m_p.is_one() || m_q.is_one()) {
m_q = 0;
m_p = 0;
return;
}
if (m_p.index() > m_q.index())
swap(m_p, m_q);
}
std::ostream& umul_ovfl_constraint::display(std::ostream& out, lbool status) const {
switch (status) {
case l_true: return display(out);
case l_false: return display(out << "~");
case l_undef: return display(out << "?");
}
return out;
}
std::ostream& umul_ovfl_constraint::display(std::ostream& out) const {
return out << "ovfl*(" << m_p << ", " << m_q << ")";
}
lbool umul_ovfl_constraint::eval(pdd const& p, pdd const& q) {
if (p.is_zero() || q.is_zero() || p.is_one() || q.is_one())
return l_false;
if (p.is_val() && q.is_val()) {
if (p.val() * q.val() > p.manager().max_value())
return l_true;
else
return l_false;
}
return l_undef;
}
lbool umul_ovfl_constraint::eval() const {
return eval(p(), q());
}
lbool umul_ovfl_constraint::eval(assignment const& a) const {
return eval(a.apply_to(p()), a.apply_to(q()));
}
void umul_ovfl_constraint::narrow(solver& s, bool is_positive, bool first) {
auto p1 = s.subst(p());
auto q1 = s.subst(q());
if (is_always_false(is_positive, p1, q1)) {
s.set_conflict({ this, is_positive });
return;
}
if (is_always_true(is_positive, p1, q1))
return;
if (first)
activate(s, is_positive);
if (try_viable(s, is_positive, p(), q(), p1, q1))
return;
if (narrow_bound(s, is_positive, p(), q(), p1, q1))
return;
if (narrow_bound(s, is_positive, q(), p(), q1, p1))
return;
}
void umul_ovfl_constraint::activate(solver& s, bool is_positive) {
// TODO - remove to enable
return;
if (!is_positive) {
signed_constraint sc(this, is_positive);
// ¬Omega(p, q) ==> q = 0 \/ p <= p*q
// ¬Omega(p, q) ==> p = 0 \/ q <= p*q
s.add_clause(~sc, s.eq(q()), s.ule(p(), p()*q()), false);
s.add_clause(~sc, s.eq(p()), s.ule(q(), p()*q()), false);
}
}
/**
* if p constant, q, propagate inequality
*/
bool umul_ovfl_constraint::narrow_bound(solver& s, bool is_positive, pdd const& p0, pdd const& q0, pdd const& p, pdd const& q) {
LOG("p: " << p0 << " := " << p);
LOG("q: " << q0 << " := " << q);
if (!p.is_val())
return false;
VERIFY(!p.is_zero() && !p.is_one()); // evaluation should catch this case
rational const& M = p.manager().two_to_N();
// q_bound
// = min q . Ovfl(p_val, q)
// = min q . p_val * q >= M
// = min q . q >= M / p_val
// = ceil(M / p_val)
rational const q_bound = ceil(M / p.val());
SASSERT(2 <= q_bound && q_bound <= M/2);
SASSERT(p.val() * q_bound >= M);
SASSERT(p.val() * (q_bound - 1) < M);
// LOG("q_bound: " << q.manager().mk_val(q_bound));
// We need the following properties for the bounds:
//
// p_bound * (q_bound - 1) < M
// p_bound * q_bound >= M
//
// With these properties we get:
//
// p <= p_bound & q < q_bound ==> ~Ovfl(p, q)
// p >= p_bound & q >= q_bound ==> Ovfl(p, q)
//
// Written as lemmas:
//
// Ovfl(p, q) & p <= p_bound ==> q >= q_bound
// ~Ovfl(p, q) & p >= p_bound ==> q < q_bound
//
signed_constraint sc(this, is_positive);
if (is_positive) {
// Find largest bound for p such that q_bound is still correct.
// p_bound = max p . (q_bound - 1)*p < M
// = max p . p < M / (q_bound - 1)
// = ceil(M / (q_bound - 1)) - 1
rational const p_bound = ceil(M / (q_bound - 1)) - 1;
SASSERT(p.val() <= p_bound);
SASSERT(p_bound * q_bound >= M);
SASSERT(p_bound * (q_bound - 1) < M);
// LOG("p_bound: " << p.manager().mk_val(p_bound));
clause_builder lemma(s, "Ovfl(p, q) & p <= p_bound ==> q >= q_bound");
lemma.insert_eval(~sc);
lemma.insert_eval(~s.ule(p0, p_bound));
lemma.insert(s.ule(q_bound, q0));
s.add_clause(lemma.build());
}
else {
// Find lowest bound for p such that q_bound is still correct.
// p_bound = min p . Ovfl(p, q_bound) = ceil(M / q_bound)
rational const p_bound = ceil(M / q_bound);
SASSERT(p_bound <= p.val());
SASSERT(p_bound * q_bound >= M);
SASSERT(p_bound * (q_bound - 1) < M);
// LOG("p_bound: " << p.manager().mk_val(p_bound));
clause_builder lemma(s, "~Ovfl(p, q) & p >= p_bound ==> q < q_bound");
lemma.insert_eval(~sc);
lemma.insert_eval(~s.ule(p_bound, p0));
lemma.insert(s.ult(q0, q_bound));
s.add_clause(lemma.build());
}
return true;
}
bool umul_ovfl_constraint::try_viable(solver& s, bool is_positive, pdd const& p0, pdd const& q0, pdd const& p, pdd const& q) {
LOG("p: " << p0 << " := " << p);
LOG("q: " << q0 << " := " << q);
signed_constraint sc(this, is_positive);
return s.m_viable.intersect(p0, q0, sc);
}
unsigned umul_ovfl_constraint::hash() const {
return mk_mix(p().hash(), q().hash(), kind());
}
bool umul_ovfl_constraint::operator==(constraint const& other) const {
return other.is_umul_ovfl() && p() == other.to_umul_ovfl().p() && q() == other.to_umul_ovfl().q();
}
void umul_ovfl_constraint::add_to_univariate_solver(pvar v, solver& s, univariate_solver& us, unsigned dep, bool is_positive) const {
pdd p1 = s.subst(p());
if (!p1.is_univariate_in(v))
return;
pdd q1 = s.subst(q());
if (!q1.is_univariate_in(v))
return;
us.add_umul_ovfl(p1.get_univariate_coefficients(), q1.get_univariate_coefficients(), !is_positive, dep);
}
}