3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-07 01:54:08 +00:00
z3/src/cmd_context/cmd_context.cpp
Nikolaj Bjorner 51a4085910 check for logic in solver
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2016-11-04 15:19:11 +00:00

1824 lines
56 KiB
C++

/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
cmd_context.cpp
Abstract:
Command context.
Author:
Leonardo (leonardo) 2011-03-01
Notes:
--*/
#include<signal.h>
#include"tptr.h"
#include"cmd_context.h"
#include"func_decl_dependencies.h"
#include"arith_decl_plugin.h"
#include"bv_decl_plugin.h"
#include"array_decl_plugin.h"
#include"datatype_decl_plugin.h"
#include"seq_decl_plugin.h"
#include"pb_decl_plugin.h"
#include"fpa_decl_plugin.h"
#include"ast_pp.h"
#include"var_subst.h"
#include"pp.h"
#include"ast_smt2_pp.h"
#include"basic_cmds.h"
#include"cancel_eh.h"
#include"scoped_ctrl_c.h"
#include"dec_ref_util.h"
#include"decl_collector.h"
#include"well_sorted.h"
#include"model_evaluator.h"
#include"for_each_expr.h"
#include"scoped_timer.h"
#include"interpolant_cmds.h"
#include"model_smt2_pp.h"
#include"model_v2_pp.h"
#include"model_params.hpp"
#include"th_rewriter.h"
#include"tactic_exception.h"
#include"smt_logics.h"
func_decls::func_decls(ast_manager & m, func_decl * f):
m_decls(TAG(func_decl*, f, 0)) {
m.inc_ref(f);
}
void func_decls::finalize(ast_manager & m) {
TRACE("cmd_context_detail", tout << "finalizing func_decls...\n";);
if (GET_TAG(m_decls) == 0) {
m.dec_ref(UNTAG(func_decl *, m_decls));
}
else {
TRACE("func_decls", tout << "finalize...\n";);
func_decl_set * fs = UNTAG(func_decl_set *, m_decls);
func_decl_set::iterator it = fs->begin();
func_decl_set::iterator end = fs->end();
for (; it != end; ++it) {
TRACE("func_decls", tout << "dec_ref of " << (*it)->get_name() << " ref_count: " << (*it)->get_ref_count() << "\n";);
m.dec_ref(*it);
}
dealloc(fs);
}
m_decls = 0;
}
bool func_decls::contains(func_decl * f) const {
if (GET_TAG(m_decls) == 0) {
return UNTAG(func_decl*, m_decls) == f;
}
else {
func_decl_set * fs = UNTAG(func_decl_set *, m_decls);
return fs->contains(f);
}
}
bool func_decls::insert(ast_manager & m, func_decl * f) {
if (contains(f))
return false;
m.inc_ref(f);
if (m_decls == 0) {
m_decls = TAG(func_decl*, f, 0);
}
else if (GET_TAG(m_decls) == 0) {
func_decl_set * new_fs = alloc(func_decl_set);
new_fs->insert(UNTAG(func_decl*, m_decls));
new_fs->insert(f);
m_decls = TAG(func_decl*, new_fs, 1);
}
else {
func_decl_set * fs = UNTAG(func_decl_set*, m_decls);
fs->insert(f);
}
return true;
}
void func_decls::erase(ast_manager & m, func_decl * f) {
if (!contains(f))
return;
if (GET_TAG(m_decls) == 0) {
m.dec_ref(f);
m_decls = 0;
}
else {
func_decl_set * fs = UNTAG(func_decl_set *, m_decls);
fs->erase(f);
m.dec_ref(f);
if (fs->empty()) {
dealloc(fs);
m_decls = 0;
}
}
}
/**
\brief Return true if func_decls contains a declaration different from f, but with the same domain.
*/
bool func_decls::clash(func_decl * f) const {
if (m_decls == 0)
return false;
if (GET_TAG(m_decls) == 0)
return false;
func_decl_set * fs = UNTAG(func_decl_set *, m_decls);
func_decl_set::iterator it = fs->begin();
func_decl_set::iterator end = fs->end();
for (; it != end; ++it) {
func_decl * g = *it;
if (g == f)
continue;
if (g->get_arity() != f->get_arity())
continue;
unsigned num = g->get_arity();
unsigned i;
for (i = 0; i < num; i++)
if (g->get_domain(i) != f->get_domain(i))
break;
if (i == num)
return true;
}
return false;
}
bool func_decls::more_than_one() const {
if (m_decls == 0 || GET_TAG(m_decls) == 0)
return false;
func_decl_set * fs = UNTAG(func_decl_set *, m_decls);
return fs->size() > 1;
}
func_decl * func_decls::first() const {
if (m_decls == 0)
return 0;
if (GET_TAG(m_decls) == 0)
return UNTAG(func_decl*, m_decls);
func_decl_set * fs = UNTAG(func_decl_set *, m_decls);
SASSERT(!fs->empty());
return *(fs->begin());
}
func_decl * func_decls::find(unsigned arity, sort * const * domain, sort * range) const {
if (!more_than_one())
return first();
func_decl_set * fs = UNTAG(func_decl_set *, m_decls);
func_decl_set::iterator it = fs->begin();
func_decl_set::iterator end = fs->end();
for (; it != end; it++) {
func_decl * f = *it;
if (range != 0 && f->get_range() != range)
continue;
if (f->get_arity() != arity)
continue;
unsigned i = 0;
for (i = 0; i < arity; i++) {
if (f->get_domain(i) != domain[i])
break;
}
if (i == arity)
return f;
}
return 0;
}
func_decl * func_decls::find(ast_manager & m, unsigned num_args, expr * const * args, sort * range) const {
if (!more_than_one())
first();
ptr_buffer<sort> sorts;
for (unsigned i = 0; i < num_args; i++)
sorts.push_back(m.get_sort(args[i]));
return find(num_args, sorts.c_ptr(), range);
}
ast_object_ref::ast_object_ref(cmd_context & ctx, ast * a):m_ast(a) {
ctx.m().inc_ref(a);
}
void ast_object_ref::finalize(cmd_context & ctx) {
ctx.m().dec_ref(m_ast);
}
void stream_ref::set(char const * name) {
if (!name) {
throw cmd_exception("invalid stream name");
}
reset();
SASSERT(!m_owner);
if (strcmp(name, "stdout") == 0) {
m_name = "stdout";
m_stream = &std::cout;
}
else if (strcmp(name, "stderr") == 0) {
m_name = "stderr";
m_stream = &std::cerr;
}
else {
m_stream = alloc(std::ofstream, name, std::ios_base::app);
m_name = name;
m_owner = true;
if (m_stream->bad() || m_stream->fail()) {
reset();
std::string msg = "failed to set output stream '";
msg += name;
msg += "'";
throw cmd_exception(msg);
}
SASSERT(m_stream);
}
}
void stream_ref::reset() {
if (m_owner)
dealloc(m_stream);
m_name = m_default_name;
m_stream = &m_default;
m_owner = false;
}
class cmd_context::pp_env : public smt2_pp_environment {
protected:
cmd_context & m_owner;
arith_util m_autil;
bv_util m_bvutil;
array_util m_arutil;
fpa_util m_futil;
seq_util m_sutil;
datalog::dl_decl_util m_dlutil;
format_ns::format * pp_fdecl_name(symbol const & s, func_decls const & fs, func_decl * f, unsigned & len) {
format_ns::format * f_name = smt2_pp_environment::pp_fdecl_name(s, len);
if (!fs.more_than_one())
return f_name;
if (!fs.clash(f))
return f_name;
return pp_as(f_name, f->get_range());
}
format_ns::format * pp_fdecl_ref_core(symbol const & s, func_decls const & fs, func_decl * f) {
unsigned len;
format_ns::format * f_name = smt2_pp_environment::pp_fdecl_name(s, len);
if (!fs.more_than_one())
return f_name;
return pp_signature(f_name, f);
}
public:
pp_env(cmd_context & o):m_owner(o), m_autil(o.m()), m_bvutil(o.m()), m_arutil(o.m()), m_futil(o.m()), m_sutil(o.m()), m_dlutil(o.m()) {}
virtual ~pp_env() {}
virtual ast_manager & get_manager() const { return m_owner.m(); }
virtual arith_util & get_autil() { return m_autil; }
virtual bv_util & get_bvutil() { return m_bvutil; }
virtual array_util & get_arutil() { return m_arutil; }
virtual fpa_util & get_futil() { return m_futil; }
virtual seq_util & get_sutil() { return m_sutil; }
virtual datalog::dl_decl_util& get_dlutil() { return m_dlutil; }
virtual bool uses(symbol const & s) const {
return
m_owner.m_builtin_decls.contains(s) ||
m_owner.m_func_decls.contains(s);
}
virtual format_ns::format * pp_sort(sort * s) {
return m_owner.pp(s);
}
virtual format_ns::format * pp_fdecl(func_decl * f, unsigned & len) {
symbol s = f->get_name();
func_decls fs;
if (m_owner.m_func_decls.find(s, fs) && fs.contains(f)) {
return pp_fdecl_name(s, fs, f, len);
}
if (m_owner.m_func_decl2alias.find(f, s) && m_owner.m_func_decls.find(s, fs) && fs.contains(f)) {
return pp_fdecl_name(s, fs, f, len);
}
return smt2_pp_environment::pp_fdecl(f, len);
}
virtual format_ns::format * pp_fdecl_ref(func_decl * f) {
symbol s = f->get_name();
func_decls fs;
if (m_owner.m_func_decls.find(s, fs) && fs.contains(f)) {
return pp_fdecl_ref_core(s, fs, f);
}
if (m_owner.m_func_decl2alias.find(f, s) && m_owner.m_func_decls.find(s, fs) && fs.contains(f)) {
return pp_fdecl_ref_core(s, fs, f);
}
return smt2_pp_environment::pp_fdecl_ref(f);
}
};
cmd_context::cmd_context(bool main_ctx, ast_manager * m, symbol const & l):
m_main_ctx(main_ctx),
m_logic(l),
m_interactive_mode(false),
m_global_decls(false),
m_print_success(m_params.m_smtlib2_compliant),
m_random_seed(0),
m_produce_unsat_cores(false),
m_produce_unsat_assumptions(false),
m_produce_assignments(false),
m_status(UNKNOWN),
m_numeral_as_real(false),
m_ignore_check(false),
m_exit_on_error(false),
m_manager(m),
m_own_manager(m == 0),
m_manager_initialized(false),
m_rec_fun_declared(false),
m_pmanager(0),
m_sexpr_manager(0),
m_regular("stdout", std::cout),
m_diagnostic("stderr", std::cerr) {
SASSERT(m != 0 || !has_manager());
install_basic_cmds(*this);
install_ext_basic_cmds(*this);
install_core_tactic_cmds(*this);
install_interpolant_cmds(*this);
SASSERT(m != 0 || !has_manager());
if (m_main_ctx) {
set_verbose_stream(diagnostic_stream());
}
}
cmd_context::~cmd_context() {
if (m_main_ctx) {
set_verbose_stream(std::cerr);
}
finalize_cmds();
finalize_tactic_cmds();
finalize_probes();
reset(true);
m_solver = 0;
m_check_sat_result = 0;
}
void cmd_context::set_cancel(bool f) {
if (has_manager()) {
if (f) {
m().limit().cancel();
}
else {
m().limit().reset_cancel();
}
}
}
opt_wrapper* cmd_context::get_opt() {
return m_opt.get();
}
void cmd_context::set_opt(opt_wrapper* opt) {
m_opt = opt;
for (unsigned i = 0; i < m_scopes.size(); ++i) {
m_opt->push();
}
m_opt->set_logic(m_logic);
}
void cmd_context::global_params_updated() {
m_params.updt_params();
if (m_params.m_smtlib2_compliant)
m_print_success = true;
if (m_solver) {
params_ref p;
if (!m_params.m_auto_config)
p.set_bool("auto_config", false);
m_solver->updt_params(p);
}
if (m_opt) {
get_opt()->updt_params(gparams::get_module("opt"));
}
}
void cmd_context::set_produce_models(bool f) {
if (m_solver)
m_solver->set_produce_models(f);
m_params.m_model = f;
}
void cmd_context::set_produce_unsat_cores(bool f) {
// can only be set before initialization
SASSERT(!has_manager());
m_params.m_unsat_core = f;
}
void cmd_context::set_produce_proofs(bool f) {
// can only be set before initialization
SASSERT(!has_manager());
m_params.m_proof = f;
}
void cmd_context::set_produce_interpolants(bool f) {
// can only be set before initialization
// FIXME currently synonym for produce_proofs
// also sets the default solver to be simple smt
SASSERT(!has_manager());
m_params.m_proof = f;
// set_solver_factory(mk_smt_solver_factory());
}
bool cmd_context::produce_models() const {
return m_params.m_model;
}
bool cmd_context::produce_proofs() const {
return m_params.m_proof;
}
bool cmd_context::produce_interpolants() const {
// FIXME currently synonym for produce_proofs
return m_params.m_proof;
}
bool cmd_context::produce_unsat_cores() const {
return m_params.m_unsat_core;
}
bool cmd_context::well_sorted_check_enabled() const {
return m_params.m_well_sorted_check;
}
bool cmd_context::validate_model_enabled() const {
return m_params.m_model_validate;
}
cmd_context::check_sat_state cmd_context::cs_state() const {
if (m_check_sat_result.get() == 0)
return css_clear;
switch (m_check_sat_result->status()) {
case l_true: return css_sat;
case l_false: return css_unsat;
default: return css_unknown;
}
}
void cmd_context::register_builtin_sorts(decl_plugin * p) {
svector<builtin_name> names;
p->get_sort_names(names, m_logic);
family_id fid = p->get_family_id();
svector<builtin_name>::const_iterator it = names.begin();
svector<builtin_name>::const_iterator end = names.end();
for (; it != end; ++it) {
psort_decl * d = pm().mk_psort_builtin_decl((*it).m_name, fid, (*it).m_kind);
insert(d);
}
}
void cmd_context::register_builtin_ops(decl_plugin * p) {
svector<builtin_name> names;
p->get_op_names(names, m_logic);
family_id fid = p->get_family_id();
svector<builtin_name>::const_iterator it = names.begin();
svector<builtin_name>::const_iterator end = names.end();
for (; it != end; ++it) {
if (m_builtin_decls.contains((*it).m_name)) {
builtin_decl & d = m_builtin_decls.find((*it).m_name);
builtin_decl * new_d = alloc(builtin_decl, fid, (*it).m_kind, d.m_next);
d.m_next = new_d;
m_extra_builtin_decls.push_back(new_d);
}
else {
m_builtin_decls.insert((*it).m_name, builtin_decl(fid, (*it).m_kind));
}
}
}
void cmd_context::register_plugin(symbol const & name, decl_plugin * p, bool install_names) {
m_manager->register_plugin(name, p);
if (install_names) {
register_builtin_sorts(p);
register_builtin_ops(p);
}
}
void cmd_context::load_plugin(symbol const & name, bool install, svector<family_id>& fids) {
family_id id = m_manager->get_family_id(name);
decl_plugin* p = m_manager->get_plugin(id);
if (install && p && fids.contains(id)) {
register_builtin_sorts(p);
register_builtin_ops(p);
}
fids.erase(id);
}
bool cmd_context::logic_has_arith() const {
return !has_logic() || smt_logics::logic_has_arith(m_logic);
}
bool cmd_context::logic_has_bv() const {
return !has_logic() || smt_logics::logic_has_bv(m_logic);
}
bool cmd_context::logic_has_seq() const {
return !has_logic() || smt_logics::logic_has_seq(m_logic);
}
bool cmd_context::logic_has_fpa() const {
return !has_logic() || smt_logics::logic_has_fpa(m_logic);
}
bool cmd_context::logic_has_array() const {
return !has_logic() || smt_logics::logic_has_array(m_logic);
}
bool cmd_context::logic_has_datatype() const {
return !has_logic() || smt_logics::logic_has_datatype(m_logic);
}
void cmd_context::init_manager_core(bool new_manager) {
SASSERT(m_manager != 0);
SASSERT(m_pmanager != 0);
m_dt_eh = alloc(dt_eh, *this);
m_pmanager->set_new_datatype_eh(m_dt_eh.get());
if (new_manager) {
decl_plugin * basic = m_manager->get_plugin(m_manager->get_basic_family_id());
register_builtin_sorts(basic);
register_builtin_ops(basic);
// the manager was created by the command context.
register_plugin(symbol("arith"), alloc(arith_decl_plugin), logic_has_arith());
register_plugin(symbol("bv"), alloc(bv_decl_plugin), logic_has_bv());
register_plugin(symbol("array"), alloc(array_decl_plugin), logic_has_array());
register_plugin(symbol("datatype"), alloc(datatype_decl_plugin), logic_has_datatype());
register_plugin(symbol("seq"), alloc(seq_decl_plugin), logic_has_seq());
register_plugin(symbol("pb"), alloc(pb_decl_plugin), !has_logic());
register_plugin(symbol("fpa"), alloc(fpa_decl_plugin), logic_has_fpa());
register_plugin(symbol("datalog_relation"), alloc(datalog::dl_decl_plugin), !has_logic());
}
else {
// the manager was created by an external module
// we register all plugins available in the manager.
// unless the logic specifies otherwise.
svector<family_id> fids;
m_manager->get_range(fids);
load_plugin(symbol("arith"), logic_has_arith(), fids);
load_plugin(symbol("bv"), logic_has_bv(), fids);
load_plugin(symbol("array"), logic_has_array(), fids);
load_plugin(symbol("datatype"), logic_has_datatype(), fids);
load_plugin(symbol("seq"), logic_has_seq(), fids);
load_plugin(symbol("fpa"), logic_has_fpa(), fids);
svector<family_id>::iterator it = fids.begin();
svector<family_id>::iterator end = fids.end();
for (; it != end; ++it) {
decl_plugin * p = m_manager->get_plugin(*it);
if (p) {
register_builtin_sorts(p);
register_builtin_ops(p);
}
}
}
if (!has_logic()) {
// add list type only if the logic is not specified.
// it prevents clashes with builtin types.
insert(pm().mk_plist_decl());
}
if (m_solver_factory) {
mk_solver();
}
m_check_logic.set_logic(m(), m_logic);
}
void cmd_context::init_manager() {
if (m_manager_initialized) {
// no-op
}
else if (m_manager) {
m_manager_initialized = true;
SASSERT(!m_own_manager);
init_external_manager();
}
else {
m_manager_initialized = true;
SASSERT(m_pmanager == 0);
m_check_sat_result = 0;
m_manager = m_params.mk_ast_manager();
m_pmanager = alloc(pdecl_manager, *m_manager);
init_manager_core(true);
}
}
void cmd_context::init_external_manager() {
SASSERT(m_manager != 0);
SASSERT(m_pmanager == 0);
m_pmanager = alloc(pdecl_manager, *m_manager);
init_manager_core(false);
}
bool cmd_context::set_logic(symbol const & s) {
if (has_logic())
throw cmd_exception("the logic has already been set");
if (has_manager() && m_main_ctx)
throw cmd_exception("logic must be set before initialization");
if (!smt_logics::supported_logic(s)) {
return false;
}
m_logic = s;
if (smt_logics::logic_has_reals_only(s)) {
m_numeral_as_real = true;
}
return true;
}
std::string cmd_context::reason_unknown() const {
if (m_check_sat_result.get() == 0)
throw cmd_exception("state of the most recent check-sat command is not known");
return m_check_sat_result->reason_unknown();
}
bool cmd_context::is_func_decl(symbol const & s) const {
return m_builtin_decls.contains(s) || m_func_decls.contains(s);
}
void cmd_context::insert(symbol const & s, func_decl * f) {
m_check_sat_result = 0;
if (!m_check_logic(f)) {
throw cmd_exception(m_check_logic.get_last_error());
}
if (m_macros.contains(s)) {
throw cmd_exception("invalid declaration, named expression already defined with this name ", s);
}
if (m_builtin_decls.contains(s)) {
throw cmd_exception("invalid declaration, builtin symbol ", s);
}
dictionary<func_decls>::entry * e = m_func_decls.insert_if_not_there2(s, func_decls());
func_decls & fs = e->get_data().m_value;
if (!fs.insert(m(), f)) {
std::string msg = "invalid declaration, ";
msg += f->get_arity() == 0 ? "constant" : "function";
msg += " '";
msg += s.str();
msg += "' (with the given signature) already declared";
throw cmd_exception(msg.c_str());
}
if (s != f->get_name()) {
TRACE("func_decl_alias", tout << "adding alias for: " << f->get_name() << ", alias: " << s << "\n";);
m_func_decl2alias.insert(f, s);
}
if (!m_global_decls) {
m_func_decls_stack.push_back(sf_pair(s, f));
}
TRACE("cmd_context", tout << "new function decl\n" << mk_pp(f, m()) << "\n";);
}
void cmd_context::insert(symbol const & s, psort_decl * p) {
m_check_sat_result = 0;
if (m_psort_decls.contains(s)) {
throw cmd_exception("sort already defined ", s);
}
pm().inc_ref(p);
m_psort_decls.insert(s, p);
if (!m_global_decls) {
m_psort_decls_stack.push_back(s);
}
TRACE("cmd_context", tout << "new sort decl\n"; p->display(tout); tout << "\n";);
}
void cmd_context::insert(symbol const & s, unsigned arity, expr * t) {
m_check_sat_result = 0;
if (m_builtin_decls.contains(s)) {
throw cmd_exception("invalid macro/named expression, builtin symbol ", s);
}
if (m_macros.contains(s)) {
throw cmd_exception("named expression already defined");
}
if (m_func_decls.contains(s)) {
throw cmd_exception("invalid named expression, declaration already defined with this name ", s);
}
m().inc_ref(t);
TRACE("insert_macro", tout << "new macro " << arity << "\n" << mk_pp(t, m()) << "\n";);
m_macros.insert(s, macro(arity, t));
if (!m_global_decls) {
m_macros_stack.push_back(s);
}
}
void cmd_context::insert(cmd * c) {
symbol const & s = c->get_name();
cmd * old_c;
if (m_cmds.find(s, old_c) && c != old_c) {
old_c->finalize(*this);
dealloc(old_c);
}
m_cmds.insert(s, c);
}
void cmd_context::insert_user_tactic(symbol const & s, sexpr * d) {
sm().inc_ref(d);
sexpr * old_d;
if (m_user_tactic_decls.find(s, old_d)) {
sm().dec_ref(old_d);
}
m_user_tactic_decls.insert(s, d);
}
void cmd_context::insert(symbol const & s, object_ref * r) {
r->inc_ref(*this);
object_ref * old_r = 0;
if (m_object_refs.find(s, old_r)) {
old_r->dec_ref(*this);
}
m_object_refs.insert(s, r);
}
void cmd_context::insert_rec_fun(func_decl* f, expr_ref_vector const& binding, svector<symbol> const& ids, expr* e) {
expr_ref eq(m());
app_ref lhs(m());
lhs = m().mk_app(f, binding.size(), binding.c_ptr());
eq = m().mk_eq(lhs, e);
if (!ids.empty()) {
expr* pat = m().mk_pattern(lhs);
eq = m().mk_forall(ids.size(), f->get_domain(), ids.c_ptr(), eq, 0, m().rec_fun_qid(), symbol::null, 1, &pat);
}
//
// disable warning given the current way they are used
// (Z3 will here silently assume and not check the definitions to be well founded,
// and please use HSF for everything else).
//
if (false && !ids.empty() && !m_rec_fun_declared) {
warning_msg("recursive function definitions are assumed well-founded");
m_rec_fun_declared = true;
}
assert_expr(eq);
}
func_decl * cmd_context::find_func_decl(symbol const & s) const {
builtin_decl d;
if (m_builtin_decls.find(s, d)) {
try {
// Remark: ignoring m_next of d. We do not allow two different theories to define the same constant name.
func_decl * f;
f = m().mk_func_decl(d.m_fid, d.m_decl, 0, 0, 0, static_cast<sort*const*>(0), 0);
if (f != 0)
return f;
}
catch (ast_exception &) {
}
throw cmd_exception("invalid function declaration reference, must provide signature for builtin symbol ", s);
}
if (m_macros.contains(s))
throw cmd_exception("invalid function declaration reference, named expressions (aka macros) cannot be referenced ", s);
func_decls fs;
if (m_func_decls.find(s, fs)) {
if (fs.more_than_one())
throw cmd_exception("ambiguous function declaration reference, provide full signature to disumbiguate (<symbol> (<sort>*) <sort>) ", s);
return fs.first();
}
throw cmd_exception("invalid function declaration reference, unknown function ", s);
return 0;
}
/**
\brief Select a builtin_decl from the list starting at first.
We select the decl d s.t. d->m_fid == target_id
If there is none that satisfies this condition, we return first.
This is a HACK for supporting arithmetic and floating-point arithmetic.
These are two different theories in Z3, but they share builtin symbol names: +, -, *, /, <, <=, >, >=
*/
static builtin_decl const & peek_builtin_decl(builtin_decl const & first, family_id target_id) {
builtin_decl const * curr = &first;
while (curr != 0) {
if (curr->m_fid == target_id)
return *curr;
curr = curr->m_next;
}
return first;
}
func_decl * cmd_context::find_func_decl(symbol const & s, unsigned num_indices, unsigned const * indices,
unsigned arity, sort * const * domain, sort * range) const {
builtin_decl d;
if (m_builtin_decls.find(s, d)) {
family_id fid = d.m_fid;
decl_kind k = d.m_decl;
// Hack: if d.m_next != 0, we use domain[0] (if available) to decide which plugin we use.
if (d.m_decl != 0 && arity > 0) {
builtin_decl const & d2 = peek_builtin_decl(d, domain[0]->get_family_id());
fid = d2.m_fid;
k = d2.m_decl;
}
func_decl * f;
if (num_indices == 0) {
f = m().mk_func_decl(fid, k, 0, 0, arity, domain, range);
}
else {
buffer<parameter> ps;
for (unsigned i = 0; i < num_indices; i++)
ps.push_back(parameter(indices[i]));
f = m().mk_func_decl(fid, k, num_indices, ps.c_ptr(), arity, domain, range);
}
if (f == 0)
throw cmd_exception("invalid function declaration reference, invalid builtin reference ", s);
return f;
}
if (m_macros.contains(s))
throw cmd_exception("invalid function declaration reference, named expressions (aka macros) cannot be referenced ", s);
if (num_indices > 0)
throw cmd_exception("invalid indexed function declaration reference, unknown builtin function ", s);
func_decl * f = 0;
func_decls fs;
if (m_func_decls.find(s, fs)) {
f = fs.find(arity, domain, range);
}
if (f == 0)
throw cmd_exception("invalid function declaration reference, unknown function ", s);
return f;
}
psort_decl * cmd_context::find_psort_decl(symbol const & s) const {
psort_decl * p = 0;
m_psort_decls.find(s, p);
return p;
}
cmd_context::macro cmd_context::find_macro(symbol const & s) const {
macro m;
m_macros.find(s, m);
return m;
}
cmd * cmd_context::find_cmd(symbol const & s) const {
cmd * c = 0;
m_cmds.find(s, c);
return c;
}
sexpr * cmd_context::find_user_tactic(symbol const & s) const {
sexpr * n = 0;
m_user_tactic_decls.find(s, n);
return n;
}
object_ref * cmd_context::find_object_ref(symbol const & s) const {
object_ref * r = 0;
m_object_refs.find(s, r);
if (r == 0) throw cmd_exception("unknown global variable ", s);
return r;
}
#define CHECK_SORT(T) if (well_sorted_check_enabled()) m().check_sorts_core(T)
void cmd_context::mk_const(symbol const & s, expr_ref & result) const {
mk_app(s, 0, 0, 0, 0, 0, result);
}
void cmd_context::mk_app(symbol const & s, unsigned num_args, expr * const * args, unsigned num_indices, parameter const * indices, sort * range,
expr_ref & result) const {
builtin_decl d;
if (m_builtin_decls.find(s, d)) {
family_id fid = d.m_fid;
decl_kind k = d.m_decl;
// Hack: if d.m_next != 0, we use the sort of args[0] (if available) to decide which plugin we use.
if (d.m_decl != 0 && num_args > 0) {
builtin_decl const & d2 = peek_builtin_decl(d, m().get_sort(args[0])->get_family_id());
fid = d2.m_fid;
k = d2.m_decl;
}
if (num_indices == 0) {
result = m().mk_app(fid, k, 0, 0, num_args, args, range);
}
else {
result = m().mk_app(fid, k, num_indices, indices, num_args, args, range);
}
if (result.get() == 0)
throw cmd_exception("invalid builtin application ", s);
CHECK_SORT(result.get());
return;
}
if (num_indices > 0)
throw cmd_exception("invalid use of indexed indentifier, unknown builtin function ", s);
macro _m;
if (m_macros.find(s, _m)) {
if (num_args != _m.first)
throw cmd_exception("invalid defined function application, incorrect number of arguments ", s);
if (num_args == 0) {
result = _m.second;
return;
}
SASSERT(num_args > 0);
TRACE("macro_bug", tout << "well_sorted_check_enabled(): " << well_sorted_check_enabled() << "\n";
tout << "s: " << s << "\n";
tout << "body:\n" << mk_ismt2_pp(_m.second, m()) << "\n";
tout << "args:\n"; for (unsigned i = 0; i < num_args; i++) tout << mk_ismt2_pp(args[i], m()) << "\n" << mk_pp(m().get_sort(args[i]), m()) << "\n";);
var_subst subst(m());
subst(_m.second, num_args, args, result);
if (well_sorted_check_enabled() && !is_well_sorted(m(), result))
throw cmd_exception("invalid macro application, sort mismatch ", s);
return;
}
func_decls fs;
if (!m_func_decls.find(s, fs)) {
if (num_args == 0) {
throw cmd_exception("unknown constant ", s);
}
else
throw cmd_exception("unknown function/constant ", s);
}
if (num_args == 0 && range == 0) {
if (fs.more_than_one())
throw cmd_exception("ambiguous constant reference, more than one constant with the same sort, use a qualified expression (as <symbol> <sort>) to disumbiguate ", s);
func_decl * f = fs.first();
if (f == 0)
throw cmd_exception("unknown constant ", s);
if (f->get_arity() != 0)
throw cmd_exception("invalid function application, missing arguments ", s);
result = m().mk_const(f);
return;
}
else {
func_decl * f = fs.find(m(), num_args, args, range);
if (f == 0)
throw cmd_exception("unknown constant ", s);
if (well_sorted_check_enabled())
m().check_sort(f, num_args, args);
result = m().mk_app(f, num_args, args);
return;
}
}
void cmd_context::erase_func_decl(symbol const & s) {
if (!global_decls()) {
throw cmd_exception("function declarations can only be erased when global declarations (instead of scoped) are used");
}
func_decls fs;
m_func_decls.find(s, fs);
while (!fs.empty()) {
func_decl * f = fs.first();
if (s != f->get_name()) {
SASSERT(m_func_decl2alias.contains(f));
m_func_decl2alias.erase(f);
}
fs.erase(m(), f);
}
fs.finalize(m());
m_func_decls.erase(s);
}
void cmd_context::erase_func_decl_core(symbol const & s, func_decl * f) {
func_decls fs;
m_func_decls.find(s, fs);
if (fs.contains(f)) {
if (s != f->get_name()) {
SASSERT(m_func_decl2alias.contains(f));
m_func_decl2alias.erase(f);
}
fs.erase(m(), f);
if (fs.empty())
m_func_decls.erase(s);
}
}
void cmd_context::erase_func_decl(symbol const & s, func_decl * f) {
if (!global_decls()) {
throw cmd_exception("function declarations can only be erased when global (instead of scoped) declarations are used");
}
erase_func_decl_core(s, f);
}
void cmd_context::erase_psort_decl_core(symbol const & s) {
psort_decl * p;
if (m_psort_decls.find(s, p)) {
pm().dec_ref(p);
m_psort_decls.erase(s);
}
}
void cmd_context::erase_psort_decl(symbol const & s) {
if (!global_decls()) {
throw cmd_exception("sort declarations can only be erased when global (instead of scoped) declarations are used");
}
erase_psort_decl_core(s);
}
void cmd_context::erase_macro_core(symbol const & s) {
macro _m;
if (m_macros.find(s, _m)) {
m().dec_ref(_m.second);
m_macros.erase(s);
}
}
void cmd_context::erase_macro(symbol const & s) {
if (!global_decls()) {
throw cmd_exception("macros (aka named expressions) can only be erased when global (instead of scoped) declarations are used");
}
erase_macro_core(s);
}
void cmd_context::erase_cmd(symbol const & s) {
cmd * c;
if (m_cmds.find(s, c)) {
c->finalize(*this);
m_cmds.erase(s);
dealloc(c);
}
}
void cmd_context::erase_user_tactic(symbol const & s) {
sexpr * d;
if (m_user_tactic_decls.find(s, d)) {
m_user_tactic_decls.erase(s);
sm().dec_ref(d);
}
}
void cmd_context::erase_object_ref(symbol const & s) {
object_ref * r = 0;
if (m_object_refs.find(s, r)) {
r->dec_ref(*this);
m_object_refs.erase(s);
}
}
void cmd_context::reset_func_decls() {
dictionary<func_decls>::iterator it = m_func_decls.begin();
dictionary<func_decls>::iterator end = m_func_decls.end();
for (; it != end; ++it) {
func_decls fs = (*it).m_value;
fs.finalize(m());
}
m_func_decls.reset();
m_func_decls_stack.reset();
m_func_decl2alias.reset();
}
void cmd_context::reset_psort_decls() {
dictionary<psort_decl*>::iterator it = m_psort_decls.begin();
dictionary<psort_decl*>::iterator end = m_psort_decls.end();
for (; it != end; ++it) {
psort_decl * p = (*it).m_value;
pm().dec_ref(p);
}
m_psort_decls.reset();
m_psort_decls_stack.reset();
}
void cmd_context::reset_macros() {
dictionary<macro>::iterator it = m_macros.begin();
dictionary<macro>::iterator end = m_macros.end();
for (; it != end; ++it) {
expr * t = (*it).m_value.second;
m().dec_ref(t);
}
m_macros.reset();
m_macros_stack.reset();
}
void cmd_context::reset_cmds() {
dictionary<cmd*>::iterator it = m_cmds.begin();
dictionary<cmd*>::iterator end = m_cmds.end();
for (; it != end; ++it) {
cmd * c = (*it).m_value;
c->reset(*this);
}
}
void cmd_context::finalize_cmds() {
dictionary<cmd*>::iterator it = m_cmds.begin();
dictionary<cmd*>::iterator end = m_cmds.end();
for (; it != end; ++it) {
cmd * c = (*it).m_value;
c->finalize(*this);
dealloc(c);
}
m_cmds.reset();
}
void cmd_context::reset_user_tactics() {
dec_ref_values(sm(), m_user_tactic_decls);
m_user_tactic_decls.reset();
}
void cmd_context::reset_object_refs() {
dictionary<object_ref*>::iterator it = m_object_refs.begin();
dictionary<object_ref*>::iterator end = m_object_refs.end();
for (; it != end; ++it) {
object_ref * r = (*it).m_value;
r->dec_ref(*this);
}
m_object_refs.reset();
}
void cmd_context::insert_aux_pdecl(pdecl * p) {
pm().inc_ref(p);
m_aux_pdecls.push_back(p);
}
void cmd_context::reset(bool finalize) {
m_logic = symbol::null;
m_check_sat_result = 0;
m_numeral_as_real = false;
m_builtin_decls.reset();
m_extra_builtin_decls.reset();
m_check_logic.reset();
reset_object_refs();
reset_cmds();
reset_psort_decls();
restore_aux_pdecls(0);
reset_macros();
reset_func_decls();
restore_assertions(0);
if (m_solver)
m_solver = 0;
m_scopes.reset();
m_opt = 0;
m_pp_env = 0;
m_dt_eh = 0;
if (m_manager) {
dealloc(m_pmanager);
m_pmanager = 0;
if (m_own_manager) {
dealloc(m_manager);
m_manager = 0;
m_manager_initialized = false;
}
else {
// doesn't own manager... so it cannot be deleted
// reinit cmd_context if this is not a finalization step
if (!finalize)
init_external_manager();
else
m_manager_initialized = false;
}
}
if (m_sexpr_manager) {
dealloc(m_sexpr_manager);
m_sexpr_manager = 0;
}
SASSERT(!m_own_manager || !has_manager());
}
void cmd_context::assert_expr(expr * t) {
if (!m_check_logic(t))
throw cmd_exception(m_check_logic.get_last_error());
m_check_sat_result = 0;
m().inc_ref(t);
m_assertions.push_back(t);
if (produce_unsat_cores())
m_assertion_names.push_back(0);
if (m_solver)
m_solver->assert_expr(t);
}
void cmd_context::assert_expr(symbol const & name, expr * t) {
if (!m_check_logic(t))
throw cmd_exception(m_check_logic.get_last_error());
if (!produce_unsat_cores() || name == symbol::null) {
assert_expr(t);
return;
}
m_check_sat_result = 0;
m().inc_ref(t);
m_assertions.push_back(t);
expr * ans = m().mk_const(name, m().mk_bool_sort());
m().inc_ref(ans);
m_assertion_names.push_back(ans);
if (m_solver)
m_solver->assert_expr(t, ans);
}
void cmd_context::push() {
m_check_sat_result = 0;
init_manager();
m_scopes.push_back(scope());
scope & s = m_scopes.back();
s.m_func_decls_stack_lim = m_func_decls_stack.size();
s.m_psort_decls_stack_lim = m_psort_decls_stack.size();
s.m_macros_stack_lim = m_macros_stack.size();
s.m_aux_pdecls_lim = m_aux_pdecls.size();
s.m_assertions_lim = m_assertions.size();
if (m_solver)
m_solver->push();
if (m_opt)
m_opt->push();
}
void cmd_context::push(unsigned n) {
for (unsigned i = 0; i < n; i++)
push();
}
void cmd_context::restore_func_decls(unsigned old_sz) {
SASSERT(old_sz <= m_func_decls_stack.size());
svector<sf_pair>::iterator it = m_func_decls_stack.begin() + old_sz;
svector<sf_pair>::iterator end = m_func_decls_stack.end();
for (; it != end; ++it) {
sf_pair const & p = *it;
erase_func_decl_core(p.first, p.second);
}
m_func_decls_stack.resize(old_sz);
}
void cmd_context::restore_psort_decls(unsigned old_sz) {
SASSERT(old_sz <= m_psort_decls_stack.size());
svector<symbol>::iterator it = m_psort_decls_stack.begin() + old_sz;
svector<symbol>::iterator end = m_psort_decls_stack.end();
for (; it != end; ++it) {
symbol const & s = *it;
psort_decl * d = 0;
if (!m_psort_decls.find(s, d)) {
UNREACHABLE();
}
pm().dec_ref(d);
m_psort_decls.erase(s);
}
m_psort_decls_stack.shrink(old_sz);
}
void cmd_context::restore_macros(unsigned old_sz) {
SASSERT(old_sz <= m_macros_stack.size());
svector<symbol>::iterator it = m_macros_stack.begin() + old_sz;
svector<symbol>::iterator end = m_macros_stack.end();
for (; it != end; ++it) {
symbol const & s = *it;
macro _m;
if (!m_macros.find(s, _m)) {
UNREACHABLE();
}
m().dec_ref(_m.second);
m_macros.erase(s);
}
m_macros_stack.shrink(old_sz);
}
void cmd_context::restore_aux_pdecls(unsigned old_sz) {
SASSERT(old_sz <= m_aux_pdecls.size());
ptr_vector<pdecl>::iterator it = m_aux_pdecls.begin() + old_sz;
ptr_vector<pdecl>::iterator end = m_aux_pdecls.end();
for (; it != end; ++it) {
pm().dec_ref(*it);
}
m_aux_pdecls.shrink(old_sz);
}
static void restore(ast_manager & m, ptr_vector<expr> & c, unsigned old_sz) {
ptr_vector<expr>::iterator it = c.begin() + old_sz;
ptr_vector<expr>::iterator end = c.end();
for (; it != end; ++it) {
m.dec_ref(*it);
}
c.shrink(old_sz);
}
void cmd_context::restore_assertions(unsigned old_sz) {
if (!has_manager()) {
// restore_assertions invokes m(), so if cmd_context does not have a manager, it will try to create one.
SASSERT(old_sz == m_assertions.size());
SASSERT(m_assertions.empty());
return;
}
SASSERT(old_sz <= m_assertions.size());
SASSERT(!m_interactive_mode || m_assertions.size() == m_assertion_strings.size());
restore(m(), m_assertions, old_sz);
if (produce_unsat_cores())
restore(m(), m_assertion_names, old_sz);
if (m_interactive_mode)
m_assertion_strings.resize(old_sz);
}
void cmd_context::pop(unsigned n) {
m_check_sat_result = 0;
if (n == 0)
return;
unsigned lvl = m_scopes.size();
if (n > lvl)
throw cmd_exception("invalid pop command, argument is greater than the current stack depth");
if (m_solver) {
m_solver->pop(n);
}
if (m_opt)
m_opt->pop(n);
unsigned new_lvl = lvl - n;
scope & s = m_scopes[new_lvl];
restore_func_decls(s.m_func_decls_stack_lim);
restore_psort_decls(s.m_psort_decls_stack_lim);
restore_macros(s.m_macros_stack_lim);
restore_aux_pdecls(s.m_aux_pdecls_lim);
restore_assertions(s.m_assertions_lim);
m_scopes.shrink(new_lvl);
}
void cmd_context::check_sat(unsigned num_assumptions, expr * const * assumptions) {
if (m_ignore_check)
return;
IF_VERBOSE(100, verbose_stream() << "(started \"check-sat\")" << std::endl;);
TRACE("before_check_sat", dump_assertions(tout););
init_manager();
unsigned timeout = m_params.m_timeout;
unsigned rlimit = m_params.m_rlimit;
scoped_watch sw(*this);
lbool r;
bool was_pareto = false, was_opt = false;
if (m_opt && !m_opt->empty()) {
was_opt = true;
m_check_sat_result = get_opt();
cancel_eh<reslimit> eh(m().limit());
scoped_ctrl_c ctrlc(eh);
scoped_timer timer(timeout, &eh);
scoped_rlimit _rlimit(m().limit(), rlimit);
ptr_vector<expr> cnstr(m_assertions);
cnstr.append(num_assumptions, assumptions);
get_opt()->set_hard_constraints(cnstr);
try {
r = get_opt()->optimize();
while (r == l_true && get_opt()->is_pareto()) {
was_pareto = true;
get_opt()->display_assignment(regular_stream());
regular_stream() << "\n";
if (get_opt()->print_model()) {
model_ref mdl;
get_opt()->get_model(mdl);
display_model(mdl);
}
r = get_opt()->optimize();
}
}
catch (z3_error & ex) {
throw ex;
}
catch (z3_exception & ex) {
get_opt()->display_assignment(regular_stream());
throw cmd_exception(ex.msg());
}
if (was_pareto && r == l_false) {
r = l_true;
}
get_opt()->set_status(r);
}
else if (m_solver) {
m_check_sat_result = m_solver.get(); // solver itself stores the result.
m_solver->set_progress_callback(this);
cancel_eh<reslimit> eh(m().limit());
scoped_ctrl_c ctrlc(eh);
scoped_timer timer(timeout, &eh);
scoped_rlimit _rlimit(m().limit(), rlimit);
try {
r = m_solver->check_sat(num_assumptions, assumptions);
}
catch (z3_error & ex) {
throw ex;
}
catch (z3_exception & ex) {
m_solver->set_reason_unknown(ex.msg());
r = l_undef;
}
m_solver->set_status(r);
}
else {
// There is no solver installed in the command context.
regular_stream() << "unknown" << std::endl;
return;
}
display_sat_result(r);
if (r == l_true) {
validate_model();
}
validate_check_sat_result(r);
if (was_opt && r != l_false && !was_pareto) {
get_opt()->display_assignment(regular_stream());
}
if (r == l_true && m_params.m_dump_models) {
model_ref md;
get_check_sat_result()->get_model(md);
display_model(md);
}
}
void cmd_context::get_consequences(expr_ref_vector const& assumptions, expr_ref_vector const& vars, expr_ref_vector & conseq) {
unsigned timeout = m_params.m_timeout;
unsigned rlimit = m_params.m_rlimit;
lbool r;
m_check_sat_result = m_solver.get(); // solver itself stores the result.
m_solver->set_progress_callback(this);
cancel_eh<reslimit> eh(m().limit());
scoped_ctrl_c ctrlc(eh);
scoped_timer timer(timeout, &eh);
scoped_rlimit _rlimit(m().limit(), rlimit);
try {
r = m_solver->get_consequences(assumptions, vars, conseq);
}
catch (z3_error & ex) {
throw ex;
}
catch (z3_exception & ex) {
m_solver->set_reason_unknown(ex.msg());
r = l_undef;
}
m_solver->set_status(r);
display_sat_result(r);
}
void cmd_context::reset_assertions() {
if (!m_global_decls) {
reset(false);
return;
}
if (m_opt) {
m_opt = 0;
}
if (m_solver) {
m_solver = 0;
mk_solver();
}
restore_assertions(0);
svector<scope>::iterator it = m_scopes.begin();
svector<scope>::iterator end = m_scopes.end();
for (; it != end; ++it) {
it->m_assertions_lim = 0;
if (m_solver) m_solver->push();
}
}
void cmd_context::display_model(model_ref& mdl) {
if (mdl) {
model_params p;
if (p.v1() || p.v2()) {
std::ostringstream buffer;
model_v2_pp(buffer, *mdl, p.partial());
regular_stream() << "\"" << escaped(buffer.str().c_str(), true) << "\"" << std::endl;
} else {
regular_stream() << "(model " << std::endl;
model_smt2_pp(regular_stream(), *this, *mdl, 2);
regular_stream() << ")" << std::endl;
}
}
}
void cmd_context::display_sat_result(lbool r) {
switch (r) {
case l_true:
regular_stream() << "sat" << std::endl;
break;
case l_false:
regular_stream() << "unsat" << std::endl;
break;
case l_undef:
regular_stream() << "unknown" << std::endl;
break;
}
}
void cmd_context::validate_check_sat_result(lbool r) {
switch (r) {
case l_true:
if (m_status == UNSAT) {
#ifdef _EXTERNAL_RELEASE
throw cmd_exception("check annotation that says unsat");
#else
diagnostic_stream() << "BUG: incompleteness" << std::endl;
exit(ERR_INCOMPLETENESS);
#endif
}
break;
case l_false:
if (m_status == SAT) {
#ifdef _EXTERNAL_RELEASE
throw cmd_exception("check annotation that says sat");
#else
diagnostic_stream() << "BUG: unsoundness" << std::endl;
exit(ERR_UNSOUNDNESS);
#endif
}
break;
default:
break;
}
}
void cmd_context::set_diagnostic_stream(char const * name) {
m_diagnostic.set(name);
if (m_main_ctx) {
set_warning_stream(&(*m_diagnostic));
set_verbose_stream(diagnostic_stream());
}
}
struct contains_array_op_proc {
struct found {};
family_id m_array_fid;
contains_array_op_proc(ast_manager & m):m_array_fid(m.mk_family_id("array")) {}
void operator()(var * n) {}
void operator()(app * n) {
if (n->get_family_id() != m_array_fid)
return;
decl_kind k = n->get_decl_kind();
if (k == OP_AS_ARRAY ||
k == OP_STORE ||
k == OP_ARRAY_MAP ||
k == OP_CONST_ARRAY)
throw found();
}
void operator()(quantifier * n) {}
};
/**
\brief Check if the current model satisfies the quantifier free formulas.
*/
void cmd_context::validate_model() {
if (!validate_model_enabled())
return;
if (!is_model_available())
return;
model_ref md;
get_check_sat_result()->get_model(md);
SASSERT(md.get() != 0);
params_ref p;
p.set_uint("max_degree", UINT_MAX); // evaluate algebraic numbers of any degree.
p.set_uint("sort_store", true);
p.set_bool("completion", true);
model_evaluator evaluator(*(md.get()), p);
contains_array_op_proc contains_array(m());
{
scoped_rlimit _rlimit(m().limit(), 0);
cancel_eh<reslimit> eh(m().limit());
expr_ref r(m());
scoped_ctrl_c ctrlc(eh);
ptr_vector<expr>::const_iterator it = begin_assertions();
ptr_vector<expr>::const_iterator end = end_assertions();
bool invalid_model = false;
for (; it != end; ++it) {
expr * a = *it;
if (is_ground(a)) {
r = 0;
evaluator(a, r);
TRACE("model_validate", tout << "checking\n" << mk_ismt2_pp(a, m()) << "\nresult:\n" << mk_ismt2_pp(r, m()) << "\n";);
if (m().is_true(r))
continue;
// The evaluator for array expressions is not complete
// If r contains as_array/store/map/const expressions, then we do not generate the error.
// TODO: improve evaluator for model expressions.
// Note that, if "a" evaluates to false, then the error will be generated.
try {
for_each_expr(contains_array, r);
}
catch (contains_array_op_proc::found) {
continue;
}
TRACE("model_validate", model_smt2_pp(tout, *this, *(md.get()), 0););
invalid_model = true;
}
}
if (invalid_model) {
throw cmd_exception("an invalid model was generated");
}
}
}
// FIXME: really interpolants_enabled ought to be a parameter to the solver factory,
// but this is a global change, so for now, we use an alternate solver factory
// for interpolation
void cmd_context::mk_solver() {
bool proofs_enabled, models_enabled, unsat_core_enabled;
params_ref p;
m_params.get_solver_params(m(), p, proofs_enabled, models_enabled, unsat_core_enabled);
if (produce_interpolants() && m_interpolating_solver_factory) {
m_solver = (*m_interpolating_solver_factory)(m(), p, true /* must have proofs */, models_enabled, unsat_core_enabled, m_logic);
}
else
m_solver = (*m_solver_factory)(m(), p, proofs_enabled, models_enabled, unsat_core_enabled, m_logic);
}
void cmd_context::set_interpolating_solver_factory(solver_factory * f) {
SASSERT(!has_manager());
m_interpolating_solver_factory = f;
}
void cmd_context::set_solver_factory(solver_factory * f) {
m_solver_factory = f;
m_check_sat_result = 0;
if (has_manager() && f != 0) {
mk_solver();
// assert formulas and create scopes in the new solver.
unsigned lim = 0;
svector<scope>::iterator it = m_scopes.begin();
svector<scope>::iterator end = m_scopes.end();
for (; it != end; ++it) {
scope & s = *it;
for (unsigned i = lim; i < s.m_assertions_lim; i++) {
m_solver->assert_expr(m_assertions[i]);
}
lim = s.m_assertions_lim;
m_solver->push();
}
unsigned sz = m_assertions.size();
for (unsigned i = lim; i < sz; i++) {
m_solver->assert_expr(m_assertions[i]);
}
}
}
void cmd_context::display_statistics(bool show_total_time, double total_time) {
statistics st;
if (show_total_time)
st.update("total time", total_time);
st.update("time", get_seconds());
get_memory_statistics(st);
get_rlimit_statistics(m().limit(), st);
if (m_check_sat_result) {
m_check_sat_result->collect_statistics(st);
}
else if (m_solver) {
m_solver->collect_statistics(st);
}
else if (m_opt) {
m_opt->collect_statistics(st);
}
st.display_smt2(regular_stream());
}
void cmd_context::display_assertions() {
if (!m_interactive_mode)
throw cmd_exception("command is only available in interactive mode, use command (set-option :interactive-mode true)");
std::vector<std::string>::const_iterator it = m_assertion_strings.begin();
std::vector<std::string>::const_iterator end = m_assertion_strings.end();
regular_stream() << "(";
for (bool first = true; it != end; ++it) {
std::string const & s = *it;
if (first)
first = false;
else
regular_stream() << "\n ";
regular_stream() << s;
}
regular_stream() << ")" << std::endl;
}
bool cmd_context::is_model_available() const {
if (produce_models() &&
has_manager() &&
(cs_state() == css_sat || cs_state() == css_unknown)) {
model_ref md;
get_check_sat_result()->get_model(md);
return md.get() != 0;
}
return false;
}
format_ns::format * cmd_context::pp(sort * s) const {
TRACE("cmd_context", tout << "pp(sort * s), s: " << mk_pp(s, m()) << "\n";);
return pm().pp(s);
}
cmd_context::pp_env & cmd_context::get_pp_env() const {
if (m_pp_env.get() == 0) {
const_cast<cmd_context*>(this)->m_pp_env = alloc(pp_env, *const_cast<cmd_context*>(this));
}
return *(m_pp_env.get());
}
void cmd_context::pp(expr * n, unsigned num_vars, char const * var_prefix, format_ns::format_ref & r, sbuffer<symbol> & var_names) const {
mk_smt2_format(n, get_pp_env(), params_ref(), num_vars, var_prefix, r, var_names);
}
void cmd_context::pp(expr * n, format_ns::format_ref & r) const {
sbuffer<symbol> buf;
pp(n, 0, 0, r, buf);
}
void cmd_context::pp(func_decl * f, format_ns::format_ref & r) const {
mk_smt2_format(f, get_pp_env(), params_ref(), r);
}
void cmd_context::display(std::ostream & out, sort * s, unsigned indent) const {
format_ns::format_ref f(format_ns::fm(m()));
f = pp(s);
if (indent > 0)
f = format_ns::mk_indent(m(), indent, f);
::pp(out, f.get(), m());
}
void cmd_context::display(std::ostream & out, expr * n, unsigned indent, unsigned num_vars, char const * var_prefix, sbuffer<symbol> & var_names) const {
format_ns::format_ref f(format_ns::fm(m()));
pp(n, num_vars, var_prefix, f, var_names);
if (indent > 0)
f = format_ns::mk_indent(m(), indent, f);
::pp(out, f.get(), m());
}
void cmd_context::display(std::ostream & out, expr * n, unsigned indent) const {
sbuffer<symbol> buf;
display(out, n, indent, 0, 0, buf);
}
void cmd_context::display(std::ostream & out, func_decl * d, unsigned indent) const {
format_ns::format_ref f(format_ns::fm(m()));
pp(d, f);
if (indent > 0)
f = format_ns::mk_indent(m(), indent, f);
::pp(out, f.get(), m());
}
void cmd_context::dump_assertions(std::ostream & out) const {
ptr_vector<expr>::const_iterator it = m_assertions.begin();
ptr_vector<expr>::const_iterator end = m_assertions.end();
for (; it != end; ++it) {
display(out, *it);
out << std::endl;
}
}
void cmd_context::display_smt2_benchmark(std::ostream & out, unsigned num, expr * const * assertions, symbol const & logic) const {
if (logic != symbol::null)
out << "(set-logic " << logic << ")" << std::endl;
// collect uninterpreted function declarations
decl_collector decls(m(), false);
for (unsigned i = 0; i < num; i++) {
decls.visit(assertions[i]);
}
// TODO: display uninterpreted sort decls, and datatype decls.
unsigned num_decls = decls.get_num_decls();
func_decl * const * fs = decls.get_func_decls();
for (unsigned i = 0; i < num_decls; i++) {
display(out, fs[i]);
out << std::endl;
}
for (unsigned i = 0; i < num; i++) {
out << "(assert ";
display(out, assertions[i], 8);
out << ")" << std::endl;
}
out << "(check-sat)" << std::endl;
}
void cmd_context::slow_progress_sample() {
SASSERT(m_solver);
statistics st;
regular_stream() << "(progress\n";
m_solver->collect_statistics(st);
st.display_smt2(regular_stream());
svector<symbol> labels;
m_solver->get_labels(labels);
regular_stream() << "(labels";
for (unsigned i = 0; i < labels.size(); i++) {
regular_stream() << " " << labels[i];
}
regular_stream() << "))" << std::endl;
}
void cmd_context::fast_progress_sample() {
}
cmd_context::dt_eh::dt_eh(cmd_context & owner):
m_owner(owner),
m_dt_util(owner.m()) {
}
cmd_context::dt_eh::~dt_eh() {
}
void cmd_context::dt_eh::operator()(sort * dt) {
TRACE("new_dt_eh", tout << "new datatype: "; m_owner.pm().display(tout, dt); tout << "\n";);
ptr_vector<func_decl> const * constructors = m_dt_util.get_datatype_constructors(dt);
unsigned num_constructors = constructors->size();
for (unsigned j = 0; j < num_constructors; j++) {
func_decl * c = constructors->get(j);
m_owner.insert(c);
TRACE("new_dt_eh", tout << "new constructor: " << c->get_name() << "\n";);
func_decl * r = m_dt_util.get_constructor_recognizer(c);
m_owner.insert(r);
TRACE("new_dt_eh", tout << "new recognizer: " << r->get_name() << "\n";);
ptr_vector<func_decl> const * accessors = m_dt_util.get_constructor_accessors(c);
unsigned num_accessors = accessors->size();
for (unsigned k = 0; k < num_accessors; k++) {
func_decl * a = accessors->get(k);
m_owner.insert(a);
TRACE("new_dt_eh", tout << "new accessor: " << a->get_name() << "\n";);
}
}
}
std::ostream & operator<<(std::ostream & out, cmd_context::status st) {
switch (st) {
case cmd_context::UNSAT: out << "unsat"; break;
case cmd_context::SAT: out << "sat"; break;
default: out << "unknown"; break;
}
return out;
}