mirror of
https://github.com/Z3Prover/z3
synced 2025-04-15 13:28:47 +00:00
225 lines
7.6 KiB
C++
225 lines
7.6 KiB
C++
/*++
|
|
Copyright (c) 2017 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
<name>
|
|
|
|
Abstract:
|
|
|
|
<abstract>
|
|
|
|
Author:
|
|
Nikolaj Bjorner (nbjorner)
|
|
Lev Nachmanson (levnach)
|
|
|
|
Revision History:
|
|
|
|
|
|
--*/
|
|
#include "math/lp/nla_tangent_lemmas.h"
|
|
#include "math/lp/nla_core.h"
|
|
|
|
namespace nla {
|
|
|
|
struct imp {
|
|
point m_a;
|
|
point m_b;
|
|
point m_xy;
|
|
rational m_correct_v;
|
|
// "below" means that the incorrect value is less than the correct one, that is m_v < m_correct_v
|
|
bool m_below;
|
|
rational m_v; // the monomial value
|
|
lpvar m_j; // the monic variable
|
|
const monic& m_m;
|
|
const factor& m_x;
|
|
const factor& m_y;
|
|
lpvar m_jx;
|
|
lpvar m_jy;
|
|
tangents& m_tang;
|
|
imp(point xy,
|
|
const rational& v,
|
|
lpvar j, // the monic variable
|
|
const monic& m,
|
|
const factor& x,
|
|
const factor& y,
|
|
tangents& tang) : m_xy(xy),
|
|
m_correct_v(xy.x * xy.y),
|
|
m_below(v < m_correct_v),
|
|
m_v(v),
|
|
m_j(tang.var(m)),
|
|
m_m(m),
|
|
m_x(x),
|
|
m_y(y),
|
|
m_jx(tang.var(x)),
|
|
m_jy(tang.var(y)),
|
|
m_tang(tang) {}
|
|
|
|
|
|
core & c() { return m_tang.c(); }
|
|
|
|
void generate_explanations_of_tang_lemma(lp::explanation& exp) {
|
|
// here we repeat the same explanation for each lemma
|
|
c().explain(m_m, exp);
|
|
c().explain(m_x, exp);
|
|
c().explain(m_y, exp);
|
|
}
|
|
void generate_simple_tangent_lemma(const monic& m, const factorization&);
|
|
void tangent_lemma_on_bf() {
|
|
get_tang_points();
|
|
TRACE("nla_solver", tout << "tang domain = "; print_tangent_domain(tout) << std::endl;);
|
|
generate_two_tang_lines();
|
|
generate_tang_plane(m_a);
|
|
generate_tang_plane(m_b);
|
|
}
|
|
|
|
|
|
void generate_tang_plane(const point & pl) {
|
|
c().add_empty_lemma();
|
|
c().negate_relation(m_jx, pl.x);
|
|
c().negate_relation(m_jy, pl.y);
|
|
#if Z3DEBUG
|
|
int mult_sign = nla::rat_sign(pl.x - c().val(m_jx))*nla::rat_sign(pl.y - c().val(m_jy));
|
|
SASSERT((mult_sign == 1) == m_below);
|
|
// If "mult_sign is 1" then (a - x)(b-y) > 0 and ab - bx - ay + xy > 0
|
|
// or -ab + bx + ay < xy or -ay - bx + xy > -ab
|
|
// val(j) stands for xy. So, finally we have -ay - bx + j > - ab
|
|
#endif
|
|
|
|
lp::lar_term t;
|
|
t.add_monomial(- pl.x, m_jy);
|
|
t.add_monomial(- pl.y, m_jx);
|
|
t.add_var(m_j);
|
|
c().mk_ineq(t, m_below? llc::GT : llc::LT, - pl.x*pl.y);
|
|
}
|
|
|
|
void generate_two_tang_lines() {
|
|
m_tang.add_empty_lemma();
|
|
c().mk_ineq(m_jx, llc::NE, m_xy.x);
|
|
c().mk_ineq(m_j, - m_xy.x, m_jy, llc::EQ);
|
|
|
|
m_tang.add_empty_lemma();
|
|
c().mk_ineq(m_jy, llc::NE, m_xy.y);
|
|
c().mk_ineq(m_j, - m_xy.y, m_jx, llc::EQ);
|
|
}
|
|
// Get two planes tangent to surface z = xy, one at point a, and another at point b, creating a cut
|
|
void get_initial_tang_points() {
|
|
const rational& x = m_xy.x;
|
|
const rational& y = m_xy.y;
|
|
bool all_ints = m_v.is_int() && x.is_int() && y.is_int();
|
|
rational delta = rational(1);
|
|
if (!all_ints )
|
|
delta = std::min(delta, abs(m_correct_v - m_v));
|
|
TRACE("nla_solver", tout << "delta = " << delta << "\n";);
|
|
if (!m_below){
|
|
m_a = point(x - delta, y + delta);
|
|
m_b = point(x + delta, y - delta);
|
|
}
|
|
else {
|
|
// denote x = xy.x and y = xy.y, and vx, vy - the value of x and y.
|
|
// we have val(xy) < vx*y + vy*x - vx*vy = pl(x, y);
|
|
// The plane with delta (1, 1) is (vx + 1)y + (vy + 1)x - (vx + 1)(vy + 1) =
|
|
// vx*y + vy*x - vx*vy + y + x - xv*vy - vx - vy - 1 = pl(x, y) - 1
|
|
// For integers the last expression is greater than or equal to val(xy) when x = vx and y = vy.
|
|
// If x <= vx+1 and y <= vy+1 then (vx+1-x)*(vy+1-y) > 0, that creates a cut
|
|
// - (vx + 1)y - (vy + 1)x + xy > - (vx+1)*(vx+1).
|
|
// If all_ints is false then we use the fact that
|
|
// tang_plane() will not change more than on delta*delta
|
|
m_a = point(x - delta, y - delta);
|
|
m_b = point(x + delta, y + delta);
|
|
}
|
|
}
|
|
|
|
void push_tang_point(point & a) {
|
|
SASSERT(plane_is_correct_cut(a));
|
|
int steps = 10;
|
|
point del = a - m_xy;
|
|
while (steps--) {
|
|
del *= rational(2);
|
|
point na = m_xy + del;
|
|
TRACE("nla_solver_tp", tout << "del = " << del << std::endl;);
|
|
if (!plane_is_correct_cut(na)) {
|
|
TRACE("nla_solver_tp", tout << "exit";tout << std::endl;);
|
|
return;
|
|
}
|
|
a = na;
|
|
}
|
|
}
|
|
|
|
rational tang_plane(const point& a) const {
|
|
return a.x * m_xy.y + a.y * m_xy.x - a.x * a.y;
|
|
}
|
|
|
|
void get_tang_points() {
|
|
get_initial_tang_points();
|
|
TRACE("nla_solver", tout << "xy = " << m_xy << ", correct val = " << m_correct_v;
|
|
tout << "\ntang points:"; print_tangent_domain(tout);tout << std::endl;);
|
|
push_tang_point(m_a);
|
|
TRACE("nla_solver", tout << "pushed a = " << m_a << std::endl;);
|
|
|
|
push_tang_point(m_b);
|
|
TRACE("nla_solver", tout << "pushed b = " << m_b << std::endl;);
|
|
TRACE("nla_solver",
|
|
tout << "tang_plane(a) = " << tang_plane(m_a) << " , val = " << m_v << ", tang_plane(b) = " << tang_plane(m_b) << " , val = " << std::endl;);
|
|
}
|
|
|
|
std::ostream& print_tangent_domain(std::ostream& out) {
|
|
out << "(" << m_a << ", " << m_b << ")";
|
|
return out;
|
|
}
|
|
|
|
bool plane_is_correct_cut(const point& plane) const {
|
|
TRACE("nla_solver", tout << "plane = " << plane << "\n";
|
|
tout << "tang_plane() = " << tang_plane(plane) << ", v = " << m_v << ", correct_v = " << m_correct_v << "\n";);
|
|
SASSERT((m_below && m_v < m_correct_v) ||
|
|
((!m_below) && m_v > m_correct_v));
|
|
rational sign = m_below? rational(1) : rational(-1);
|
|
rational px = tang_plane(plane);
|
|
return ((m_correct_v - px)*sign).is_pos() && !((px - m_v)*sign).is_neg();
|
|
}
|
|
};
|
|
|
|
tangents::tangents(core * c) : common(c, nullptr) {}
|
|
|
|
void tangents::tangent_lemma() {
|
|
if (!c().m_nla_settings.run_tangents()) {
|
|
TRACE("nla_solver", tout << "not generating tangent lemmas\n";);
|
|
return;
|
|
}
|
|
factorization bf(nullptr);
|
|
const monic* m;
|
|
if (c().find_bfc_to_refine(m, bf)) {
|
|
unsigned lemmas_size_was = c().m_lemma_vec->size();
|
|
unsigned j = m->var();
|
|
imp i(point(val(bf[0]), val(bf[1])),
|
|
c().val(j),
|
|
j,
|
|
*m,
|
|
bf[0],
|
|
bf[1],
|
|
*this);
|
|
i.tangent_lemma_on_bf();
|
|
if (!bf.is_mon()) {
|
|
lp::explanation expl;
|
|
generate_explanations_of_tang_lemma(*m, bf, expl);
|
|
for (unsigned i = lemmas_size_was; i < c().m_lemma_vec->size(); i++) {
|
|
auto &l = ((*c().m_lemma_vec)[i]);
|
|
l.expl().add(expl);
|
|
}
|
|
}
|
|
TRACE("nla_solver",
|
|
for (unsigned i = lemmas_size_was; i < c().m_lemma_vec->size(); i++)
|
|
c().print_specific_lemma((*c().m_lemma_vec)[i], tout); );
|
|
|
|
}
|
|
}
|
|
|
|
void tangents::generate_explanations_of_tang_lemma(const monic& rm, const factorization& bf, lp::explanation& exp) {
|
|
// here we repeat the same explanation for each lemma
|
|
c().explain(rm, exp);
|
|
c().explain(bf[0], exp);
|
|
c().explain(bf[1], exp);
|
|
}
|
|
|
|
}
|