3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-08-22 02:57:50 +00:00
z3/src/ast/rewriter/array_rewriter.cpp
Nikolaj Bjorner 2b82fd5d0c updated include directives
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2017-08-01 10:51:47 -07:00

417 lines
14 KiB
C++

/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
array_rewriter.cpp
Abstract:
Basic rewriting rules for Arrays.
Author:
Leonardo (leonardo) 2011-04-06
Notes:
--*/
#include "ast/rewriter/array_rewriter.h"
#include "ast/rewriter/array_rewriter_params.hpp"
#include "ast/ast_lt.h"
#include "ast/ast_pp.h"
void array_rewriter::updt_params(params_ref const & _p) {
array_rewriter_params p(_p);
m_sort_store = p.sort_store();
m_expand_select_store = p.expand_select_store();
m_expand_store_eq = p.expand_store_eq();
m_expand_select_ite = false;
}
void array_rewriter::get_param_descrs(param_descrs & r) {
array_rewriter_params::collect_param_descrs(r);
}
br_status array_rewriter::mk_app_core(func_decl * f, unsigned num_args, expr * const * args, expr_ref & result) {
SASSERT(f->get_family_id() == get_fid());
TRACE("array_rewriter", tout << mk_pp(f, m()) << "\n";
for (unsigned i = 0; i < num_args; ++i) {
tout << mk_pp(args[i], m()) << "\n";
});
switch (f->get_decl_kind()) {
case OP_SELECT:
return mk_select_core(num_args, args, result);
case OP_STORE:
return mk_store_core(num_args, args, result);
case OP_ARRAY_MAP:
SASSERT(f->get_num_parameters() == 1);
SASSERT(f->get_parameter(0).is_ast());
SASSERT(is_func_decl(f->get_parameter(0).get_ast()));
return mk_map_core(to_func_decl(f->get_parameter(0).get_ast()), num_args, args, result);
case OP_SET_UNION:
return mk_set_union(num_args, args, result);
case OP_SET_INTERSECT:
return mk_set_intersect(num_args, args, result);
case OP_SET_SUBSET:
SASSERT(num_args == 2);
return mk_set_subset(args[0], args[1], result);
case OP_SET_COMPLEMENT:
SASSERT(num_args == 1);
return mk_set_complement(args[0], result);
case OP_SET_DIFFERENCE:
SASSERT(num_args == 2);
return mk_set_difference(args[0], args[1], result);
default:
return BR_FAILED;
}
}
// l_true -- all equal
// l_false -- at least one disequal
// l_undef -- don't know
template<bool CHECK_DISEQ>
lbool array_rewriter::compare_args(unsigned num_args, expr * const * args1, expr * const * args2) {
for (unsigned i = 0; i < num_args; i++) {
if (args1[i] == args2[i])
continue;
if (CHECK_DISEQ && m().are_distinct(args1[i], args2[i]))
return l_false;
return l_undef;
}
return l_true;
}
br_status array_rewriter::mk_store_core(unsigned num_args, expr * const * args, expr_ref & result) {
SASSERT(num_args >= 3);
if (m_util.is_store(args[0])) {
lbool r = m_sort_store ?
compare_args<true>(num_args - 2, args + 1, to_app(args[0])->get_args() + 1) :
compare_args<false>(num_args - 2, args + 1, to_app(args[0])->get_args() + 1);
switch (r) {
case l_true: {
//
// store(store(a,i,v),i,w) --> store(a,i,w)
//
ptr_buffer<expr> new_args;
new_args.push_back(to_app(args[0])->get_arg(0));
new_args.append(num_args-1, args+1);
SASSERT(new_args.size() == num_args);
result = m().mk_app(get_fid(), OP_STORE, num_args, new_args.c_ptr());
return BR_DONE;
}
case l_false:
SASSERT(m_sort_store);
//
// store(store(a,i,v),j,w) -> store(store(a,j,w),i,v)
// if i, j are different, lt(i,j)
//
if (lex_lt(num_args-2, args+1, to_app(args[0])->get_args() + 1)) {
ptr_buffer<expr> new_args;
new_args.push_back(to_app(args[0])->get_arg(0));
new_args.append(num_args-1, args+1);
expr * nested_store = m().mk_app(get_fid(), OP_STORE, num_args, new_args.c_ptr());
new_args.reset();
new_args.push_back(nested_store);
new_args.append(num_args - 1, to_app(args[0])->get_args() + 1);
result = m().mk_app(get_fid(), OP_STORE, num_args, new_args.c_ptr());
return BR_REWRITE2;
}
break;
case l_undef:
break;
}
}
//
// store(const(v),i,v) --> const(v)
//
if (m_util.is_const(args[0]) &&
to_app(args[0])->get_arg(0) == args[num_args-1]) {
result = args[0];
return BR_DONE;
}
expr * v = args[num_args-1];
//
// store(a, i, select(a, i)) --> a
//
if (m_util.is_select(v) &&
compare_args<false>(num_args-1, args, to_app(v)->get_args())) {
result = args[0];
return BR_DONE;
}
return BR_FAILED;
}
br_status array_rewriter::mk_select_core(unsigned num_args, expr * const * args, expr_ref & result) {
SASSERT(num_args >= 2);
if (m_util.is_store(args[0])) {
SASSERT(to_app(args[0])->get_num_args() == num_args+1);
switch (compare_args<true>(num_args - 1, args+1, to_app(args[0])->get_args()+1)) {
case l_true:
// select(store(a, I, v), I) --> v
result = to_app(args[0])->get_arg(num_args);
return BR_DONE;
case l_false: {
// select(store(a, I, v), J) --> select(a, J) if I != J
ptr_buffer<expr> new_args;
new_args.push_back(to_app(args[0])->get_arg(0));
new_args.append(num_args-1, args+1);
result = m().mk_app(get_fid(), OP_SELECT, num_args, new_args.c_ptr());
return BR_REWRITE1;
}
default:
if (m_expand_select_store) {
// select(store(a, I, v), J) --> ite(I=J, v, select(a, J))
ptr_buffer<expr> new_args;
new_args.push_back(to_app(args[0])->get_arg(0));
new_args.append(num_args-1, args+1);
expr * sel_a_j = m().mk_app(get_fid(), OP_SELECT, num_args, new_args.c_ptr());
expr * v = to_app(args[0])->get_arg(num_args);
ptr_buffer<expr> eqs;
unsigned num_indices = num_args-1;
for (unsigned i = 0; i < num_indices; i++) {
eqs.push_back(m().mk_eq(to_app(args[0])->get_arg(i+1), args[i+1]));
}
if (num_indices == 1) {
result = m().mk_ite(eqs[0], v, sel_a_j);
return BR_REWRITE2;
}
else {
result = m().mk_ite(m().mk_and(eqs.size(), eqs.c_ptr()), v, sel_a_j);
return BR_REWRITE3;
}
}
return BR_FAILED;
}
}
if (m_util.is_const(args[0])) {
// select(const(v), I) --> v
result = to_app(args[0])->get_arg(0);
return BR_DONE;
}
if (m_util.is_as_array(args[0])) {
// select(as-array[f], I) --> f(I)
func_decl * f = m_util.get_as_array_func_decl(to_app(args[0]));
result = m().mk_app(f, num_args - 1, args + 1);
return BR_REWRITE1;
}
expr* c, *th, *el;
if (m_expand_select_ite && m().is_ite(args[0], c, th, el)) {
ptr_vector<expr> args1, args2;
args1.push_back(th);
args1.append(num_args-1, args + 1);
args2.push_back(el);
args2.append(num_args-1, args + 1);
result = m().mk_ite(c, m_util.mk_select(num_args, args1.c_ptr()), m_util.mk_select(num_args, args2.c_ptr()));
return BR_REWRITE2;
}
return BR_FAILED;
}
br_status array_rewriter::mk_map_core(func_decl * f, unsigned num_args, expr * const * args, expr_ref & result) {
SASSERT(num_args >= 0);
bool is_store0 = m_util.is_store(args[0]);
bool is_const0 = m_util.is_const(args[0]);
if (num_args == 1) {
//
// map_f (store a j v) = (store (map_f a) j (f v))
//
if (is_store0) {
app * store_expr = to_app(args[0]);
unsigned num_args = store_expr->get_num_args();
SASSERT(num_args >= 3);
expr * a = store_expr->get_arg(0);
expr * v = store_expr->get_arg(num_args-1);
ptr_buffer<expr> new_args;
new_args.push_back(m_util.mk_map(f, 1, &a)); // (map_f a)
new_args.append(num_args - 2, store_expr->get_args() + 1); // j
new_args.push_back(m().mk_app(f, v)); // (f v)
result = m().mk_app(get_fid(), OP_STORE, new_args.size(), new_args.c_ptr());
return BR_REWRITE2;
}
//
// map_f (const v) = (const (f v))
//
if (is_const0) {
expr * fv = m().mk_app(f, to_app(args[0])->get_arg(0));
result = m_util.mk_const_array(m().get_sort(args[0]), fv);
return BR_REWRITE2;
}
return BR_FAILED;
}
SASSERT(num_args > 1);
if (is_store0) {
unsigned num_indices = to_app(args[0])->get_num_args() - 2;
unsigned i;
for (i = 1; i < num_args; i++) {
if (!m_util.is_store(args[i]))
break;
unsigned j;
for (j = 1; j < num_indices+1; j++) {
if (to_app(args[0])->get_arg(j) != to_app(args[i])->get_arg(j))
break;
}
if (j < num_indices+1)
break;
}
//
// map_f (store a_1 j v_1) ... (store a_n j v_n) --> (store (map_f a_1 ... a_n) j (f v_1 ... v_n))
//
if (i == num_args) {
ptr_buffer<expr> arrays;
ptr_buffer<expr> values;
for (unsigned i = 0; i < num_args; i++) {
arrays.push_back(to_app(args[i])->get_arg(0));
values.push_back(to_app(args[i])->get_arg(num_indices+1));
}
ptr_buffer<expr> new_args;
new_args.push_back(m_util.mk_map(f, arrays.size(), arrays.c_ptr()));
new_args.append(num_indices, to_app(args[0])->get_args() + 1);
new_args.push_back(m().mk_app(f, values.size(), values.c_ptr()));
result = m().mk_app(get_fid(), OP_STORE, new_args.size(), new_args.c_ptr());
return BR_REWRITE2;
}
return BR_FAILED;
}
if (is_const0) {
unsigned i;
for (i = 1; i < num_args; i++) {
if (!m_util.is_const(args[i]))
break;
}
if (i == num_args) {
//
// map_f (const v_1) ... (const v_n) = (const (f v_1 ... v_n))
//
ptr_buffer<expr> values;
for (unsigned i = 0; i < num_args; i++) {
values.push_back(to_app(args[i])->get_arg(0));
}
expr * fv = m().mk_app(f, values.size(), values.c_ptr());
sort * in_s = get_sort(args[0]);
ptr_vector<sort> domain;
unsigned domain_sz = get_array_arity(in_s);
for (unsigned i = 0; i < domain_sz; i++)
domain.push_back(get_array_domain(in_s, i));
sort_ref out_s(m());
out_s = m_util.mk_array_sort(domain_sz, domain.c_ptr(), f->get_range());
parameter p(out_s.get());
result = m().mk_app(get_fid(), OP_CONST_ARRAY, 1, &p, 1, &fv);
return BR_REWRITE2;
}
return BR_FAILED;
}
return BR_FAILED;
}
void array_rewriter::mk_store(unsigned num_args, expr * const * args, expr_ref & result) {
if (mk_store_core(num_args, args, result) == BR_FAILED)
result = m().mk_app(get_fid(), OP_STORE, num_args, args);
}
void array_rewriter::mk_select(unsigned num_args, expr * const * args, expr_ref & result) {
if (mk_select_core(num_args, args, result) == BR_FAILED)
result = m().mk_app(get_fid(), OP_SELECT, num_args, args);
}
void array_rewriter::mk_map(func_decl * f, unsigned num_args, expr * const * args, expr_ref & result) {
if (mk_map_core(f, num_args, args, result) == BR_FAILED)
result = m_util.mk_map(f, num_args, args);
}
br_status array_rewriter::mk_set_union(unsigned num_args, expr * const * args, expr_ref & result) {
SASSERT(num_args > 0);
if (num_args == 1) {
result = args[0];
return BR_DONE;
}
SASSERT(num_args >= 2);
br_status r = unsigned2br_status(num_args - 2);
result = m_util.mk_map(m().mk_or_decl(), num_args, args);
return r;
}
br_status array_rewriter::mk_set_intersect(unsigned num_args, expr * const * args, expr_ref & result) {
SASSERT(num_args > 0);
if (num_args == 1) {
result = args[0];
return BR_DONE;
}
SASSERT(num_args >= 2);
br_status r = unsigned2br_status(num_args - 2);
result = m_util.mk_map(m().mk_and_decl(), num_args, args);
return r;
}
br_status array_rewriter::mk_set_complement(expr * arg, expr_ref & result) {
return mk_map_core(m().mk_not_decl(), 1, &arg, result);
}
br_status array_rewriter::mk_set_difference(expr * arg1, expr * arg2, expr_ref & result) {
expr * args[2] = { arg1, m_util.mk_map(m().mk_not_decl(), 1, &arg2) };
result = m_util.mk_map(m().mk_and_decl(), 2, args);
return BR_REWRITE2;
}
br_status array_rewriter::mk_set_subset(expr * arg1, expr * arg2, expr_ref & result) {
mk_set_difference(arg1, arg2, result);
result = m().mk_eq(result.get(), m_util.mk_empty_set(m().get_sort(arg1)));
return BR_REWRITE3;
}
br_status array_rewriter::mk_eq_core(expr * lhs, expr * rhs, expr_ref & result) {
if (!m_expand_store_eq) {
return BR_FAILED;
}
expr* lhs1 = lhs;
while (m_util.is_store(lhs1)) {
lhs1 = to_app(lhs1)->get_arg(0);
}
expr* rhs1 = rhs;
while (m_util.is_store(rhs1)) {
rhs1 = to_app(rhs1)->get_arg(0);
}
if (lhs1 != rhs1) {
return BR_FAILED;
}
ptr_buffer<expr> fmls, args;
expr* e;
expr_ref tmp1(m()), tmp2(m());
#define MK_EQ() \
while (m_util.is_store(e)) { \
args.push_back(lhs); \
args.append(to_app(e)->get_num_args()-2,to_app(e)->get_args()+1); \
mk_select(args.size(), args.c_ptr(), tmp1); \
args[0] = rhs; \
mk_select(args.size(), args.c_ptr(), tmp2); \
fmls.push_back(m().mk_eq(tmp1, tmp2)); \
e = to_app(e)->get_arg(0); \
args.reset(); \
} \
e = lhs;
MK_EQ();
e = rhs;
MK_EQ();
result = m().mk_and(fmls.size(), fmls.c_ptr());
return BR_REWRITE_FULL;
}