3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2026-02-20 15:34:41 +00:00
z3/src/ast/rewriter/finite_set_rewriter.cpp
Copilot 2e7f80f597
Add comprehensive algebraic rewrite rules to finite_set_rewriter (#7975)
* Initial plan

* Add comprehensive rewrite rules for finite set operations

Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>

* Add comprehensive unit tests for finite set rewrite rules

Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>

* Fix order of checks in mk_in to handle singleton same element case first

Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>

---------

Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>
Co-authored-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2025-10-15 18:46:10 +02:00

199 lines
5.5 KiB
C++

/*++
Copyright (c) 2025 Microsoft Corporation
Module Name:
finite_set_rewriter.cpp
Abstract:
Rewriting Simplification for finite sets
Author:
GitHub Copilot Agent 2025
--*/
#include "ast/rewriter/finite_set_rewriter.h"
br_status finite_set_rewriter::mk_app_core(func_decl * f, unsigned num_args, expr * const * args, expr_ref & result) {
SASSERT(f->get_family_id() == get_fid());
switch (f->get_decl_kind()) {
case OP_FINITE_SET_UNION:
return mk_union(num_args, args, result);
case OP_FINITE_SET_INTERSECT:
return mk_intersect(num_args, args, result);
case OP_FINITE_SET_DIFFERENCE:
SASSERT(num_args == 2);
return mk_difference(args[0], args[1], result);
case OP_FINITE_SET_SUBSET:
SASSERT(num_args == 2);
return mk_subset(args[0], args[1], result);
case OP_FINITE_SET_SINGLETON:
SASSERT(num_args == 1);
return mk_singleton(args[0], result);
case OP_FINITE_SET_IN:
SASSERT(num_args == 2);
return mk_in(args[0], args[1], result);
default:
return BR_FAILED;
}
}
br_status finite_set_rewriter::mk_union(unsigned num_args, expr * const * args, expr_ref & result) {
// Idempotency: set.union(x, x) -> x
if (num_args == 2 && args[0] == args[1]) {
result = args[0];
return BR_DONE;
}
// Identity: set.union(x, empty) -> x or set.union(empty, x) -> x
if (num_args == 2) {
if (m_util.is_empty(args[0])) {
result = args[1];
return BR_DONE;
}
if (m_util.is_empty(args[1])) {
result = args[0];
return BR_DONE;
}
// Absorption: set.union(x, set.intersect(x, y)) -> x
expr* a1, *a2;
if (m_util.is_intersect(args[1], a1, a2)) {
if (args[0] == a1 || args[0] == a2) {
result = args[0];
return BR_DONE;
}
}
// Absorption: set.union(set.intersect(x, y), x) -> x
if (m_util.is_intersect(args[0], a1, a2)) {
if (args[1] == a1 || args[1] == a2) {
result = args[1];
return BR_DONE;
}
}
}
return BR_FAILED;
}
br_status finite_set_rewriter::mk_intersect(unsigned num_args, expr * const * args, expr_ref & result) {
// Idempotency: set.intersect(x, x) -> x
if (num_args == 2 && args[0] == args[1]) {
result = args[0];
return BR_DONE;
}
// Annihilation: set.intersect(x, empty) -> empty or set.intersect(empty, x) -> empty
if (num_args == 2) {
if (m_util.is_empty(args[0])) {
result = args[0];
return BR_DONE;
}
if (m_util.is_empty(args[1])) {
result = args[1];
return BR_DONE;
}
// Absorption: set.intersect(x, set.union(x, y)) -> x
expr* a1, *a2;
if (m_util.is_union(args[1], a1, a2)) {
if (args[0] == a1 || args[0] == a2) {
result = args[0];
return BR_DONE;
}
}
// Absorption: set.intersect(set.union(x, y), x) -> x
if (m_util.is_union(args[0], a1, a2)) {
if (args[1] == a1 || args[1] == a2) {
result = args[1];
return BR_DONE;
}
}
}
return BR_FAILED;
}
br_status finite_set_rewriter::mk_difference(expr * arg1, expr * arg2, expr_ref & result) {
// set.difference(x, x) -> set.empty
if (arg1 == arg2) {
sort* set_sort = arg1->get_sort();
SASSERT(m_util.is_finite_set(set_sort));
result = m_util.mk_empty(set_sort);
return BR_DONE;
}
// Identity: set.difference(x, empty) -> x
if (m_util.is_empty(arg2)) {
result = arg1;
return BR_DONE;
}
// Annihilation: set.difference(empty, x) -> empty
if (m_util.is_empty(arg1)) {
result = arg1;
return BR_DONE;
}
return BR_FAILED;
}
br_status finite_set_rewriter::mk_subset(expr * arg1, expr * arg2, expr_ref & result) {
// set.subset(x, x) -> true
if (arg1 == arg2) {
result = m().mk_true();
return BR_DONE;
}
// set.subset(empty, x) -> true
if (m_util.is_empty(arg1)) {
result = m().mk_true();
return BR_DONE;
}
// set.subset(x, empty) -> x = empty
if (m_util.is_empty(arg2)) {
result = m().mk_eq(arg1, arg2);
return BR_REWRITE1;
}
// General case: set.subset(x, y) -> set.intersect(x, y) = x
expr_ref intersect(m());
intersect = m_util.mk_intersect(arg1, arg2);
result = m().mk_eq(intersect, arg1);
return BR_REWRITE3;
}
br_status finite_set_rewriter::mk_singleton(expr * arg, expr_ref & result) {
// Singleton is already in normal form, no simplifications
return BR_FAILED;
}
br_status finite_set_rewriter::mk_in(expr * elem, expr * set, expr_ref & result) {
// set.in(x, empty) -> false
if (m_util.is_empty(set)) {
result = m().mk_false();
return BR_DONE;
}
// set.in(x, singleton(y)) checks
expr* singleton_elem;
if (m_util.is_singleton(set, singleton_elem)) {
// set.in(x, singleton(x)) -> true (when x is the same)
if (elem == singleton_elem) {
result = m().mk_true();
return BR_DONE;
}
// set.in(x, singleton(y)) -> x = y (when x != y)
result = m().mk_eq(elem, singleton_elem);
return BR_REWRITE1;
}
return BR_FAILED;
}