3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-08-13 14:40:55 +00:00
z3/src/opt/opt_cmds.cpp
Nikolaj Bjorner fdaeb9bb73 integrate opt with push/pop/check-sat
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2014-03-22 16:15:50 -07:00

335 lines
9.5 KiB
C++

/*++
Copyright (c) 2013 Microsoft Corporation
Module Name:
opt_cmds.cpp
Abstract:
Commands for optimization benchmarks
Author:
Anh-Dung Phan (t-anphan) 2013-10-14
Notes:
TODO:
- Add appropriate statistics tracking to opt::context
- Deal with push/pop (later)
--*/
#include "opt_cmds.h"
#include "cmd_context.h"
#include "ast_pp.h"
#include "opt_context.h"
#include "cancel_eh.h"
#include "scoped_ctrl_c.h"
#include "scoped_timer.h"
#include "parametric_cmd.h"
#include "opt_params.hpp"
#include "model_smt2_pp.h"
static opt::context& get_opt(cmd_context& cmd) {
if (!cmd.get_opt()) {
cmd.set_opt(alloc(opt::context, cmd.m()));
}
return dynamic_cast<opt::context&>(*cmd.get_opt());
}
class assert_weighted_cmd : public cmd {
unsigned m_idx;
expr* m_formula;
rational m_weight;
symbol m_id;
public:
assert_weighted_cmd():
cmd("assert-weighted"),
m_idx(0),
m_formula(0),
m_weight(0)
{}
virtual ~assert_weighted_cmd() {
}
virtual void reset(cmd_context & ctx) {
m_idx = 0;
m_formula = 0;
m_id = symbol::null;
}
virtual char const * get_usage() const { return "<formula> <rational-weight>"; }
virtual char const * get_descr(cmd_context & ctx) const { return "assert soft constraint with weight"; }
virtual unsigned get_arity() const { return VAR_ARITY; }
// command invocation
virtual void prepare(cmd_context & ctx) {}
virtual cmd_arg_kind next_arg_kind(cmd_context & ctx) const {
switch(m_idx) {
case 0: return CPK_EXPR;
case 1: return CPK_NUMERAL;
default: return CPK_SYMBOL;
}
}
virtual void set_next_arg(cmd_context & ctx, rational const & val) {
SASSERT(m_idx == 1);
if (!val.is_pos()) {
throw cmd_exception("Invalid weight. Weights must be positive.");
}
m_weight = val;
++m_idx;
}
virtual void set_next_arg(cmd_context & ctx, expr * t) {
SASSERT(m_idx == 0);
if (!ctx.m().is_bool(t)) {
throw cmd_exception("Invalid type for expression. Expected Boolean type.");
}
m_formula = t;
++m_idx;
}
virtual void set_next_arg(cmd_context & ctx, symbol const& s) {
SASSERT(m_idx > 1);
m_id = s;
++m_idx;
}
virtual void failure_cleanup(cmd_context & ctx) {
reset(ctx);
}
virtual void execute(cmd_context & ctx) {
get_opt(ctx).add_soft_constraint(m_formula, m_weight, m_id);
reset(ctx);
}
virtual void finalize(cmd_context & ctx) {
}
};
class assert_soft_cmd : public parametric_cmd {
unsigned m_idx;
expr* m_formula;
public:
assert_soft_cmd():
parametric_cmd("assert-soft"),
m_idx(0),
m_formula(0)
{}
virtual ~assert_soft_cmd() {
}
virtual void reset(cmd_context & ctx) {
m_idx = 0;
m_formula = 0;
}
virtual char const * get_usage() const { return "<formula> [:weight <rational-weight>] [:id <symbol>]"; }
virtual char const * get_main_descr() const { return "assert soft constraint with optional weight and identifier"; }
// command invocation
virtual void prepare(cmd_context & ctx) {
reset(ctx);
}
virtual cmd_arg_kind next_arg_kind(cmd_context & ctx) const {
if (m_idx == 0) return CPK_EXPR;
return parametric_cmd::next_arg_kind(ctx);
}
virtual void init_pdescrs(cmd_context & ctx, param_descrs & p) {
p.insert("weight", CPK_NUMERAL, "(default: 1) penalty of not satisfying constraint.");
p.insert("dweight", CPK_DECIMAL, "(default: 1.0) penalty as double of not satisfying constraint.");
p.insert("id", CPK_SYMBOL, "(default: null) partition identifier for soft constraints.");
}
virtual void set_next_arg(cmd_context & ctx, expr * t) {
SASSERT(m_idx == 0);
if (!ctx.m().is_bool(t)) {
throw cmd_exception("Invalid type for expression. Expected Boolean type.");
}
m_formula = t;
++m_idx;
}
virtual void failure_cleanup(cmd_context & ctx) {
reset(ctx);
}
virtual void execute(cmd_context & ctx) {
symbol w("weight");
rational weight = ps().get_rat(symbol("weight"), rational(0));
if (weight.is_zero()) {
weight = ps().get_rat(symbol("dweight"), rational(0));
}
if (weight.is_zero()) {
weight = rational::one();
}
symbol id = ps().get_sym(symbol("id"), symbol::null);
get_opt(ctx).add_soft_constraint(m_formula, weight, id);
reset(ctx);
}
virtual void finalize(cmd_context & ctx) {
}
};
class min_maximize_cmd : public cmd {
bool m_is_max;
public:
min_maximize_cmd(bool is_max):
cmd(is_max?"maximize":"minimize"),
m_is_max(is_max)
{}
virtual void reset(cmd_context & ctx) { }
virtual char const * get_usage() const { return "<term>"; }
virtual char const * get_descr(cmd_context & ctx) const { return "check sat modulo objective function";}
virtual unsigned get_arity() const { return 1; }
virtual void prepare(cmd_context & ctx) {}
virtual cmd_arg_kind next_arg_kind(cmd_context & ctx) const { return CPK_EXPR; }
virtual void set_next_arg(cmd_context & ctx, expr * t) {
if (!is_app(t)) {
throw cmd_exception("malformed objective term: it cannot be a quantifier or bound variable");
}
get_opt(ctx).add_objective(to_app(t), m_is_max);
}
virtual void failure_cleanup(cmd_context & ctx) {
reset(ctx);
}
virtual void execute(cmd_context & ctx) {
}
};
class optimize_cmd : public parametric_cmd {
public:
optimize_cmd():
parametric_cmd("optimize")
{}
virtual ~optimize_cmd() {
}
virtual void init_pdescrs(cmd_context & ctx, param_descrs & p) {
insert_timeout(p);
insert_max_memory(p);
p.insert("print_statistics", CPK_BOOL, "(default: false) print statistics.");
opt::context::collect_param_descrs(p);
}
virtual char const * get_main_descr() const { return "check sat modulo objective function";}
virtual char const * get_usage() const { return "(<keyword> <value>)*"; }
virtual void prepare(cmd_context & ctx) {
parametric_cmd::prepare(ctx);
}
virtual void failure_cleanup(cmd_context & ctx) {
reset(ctx);
}
virtual cmd_arg_kind next_arg_kind(cmd_context & ctx) const {
return parametric_cmd::next_arg_kind(ctx);
}
virtual void execute(cmd_context & ctx) {
params_ref p = ctx.params().merge_default_params(ps());
opt::context& opt = get_opt(ctx);
opt.updt_params(p);
unsigned timeout = p.get_uint("timeout", UINT_MAX);
ptr_vector<expr>::const_iterator it = ctx.begin_assertions();
ptr_vector<expr>::const_iterator end = ctx.end_assertions();
for (; it != end; ++it) {
opt.add_hard_constraint(*it);
}
lbool r = l_undef;
cancel_eh<opt::context> eh(opt);
{
scoped_ctrl_c ctrlc(eh);
scoped_timer timer(timeout, &eh);
cmd_context::scoped_watch sw(ctx);
try {
r = opt.optimize();
}
catch (z3_error& ex) {
ctx.regular_stream() << "(error: " << ex.msg() << "\")" << std::endl;
}
catch (z3_exception& ex) {
ctx.regular_stream() << "(error: " << ex.msg() << "\")" << std::endl;
}
}
switch(r) {
case l_true: {
ctx.regular_stream() << "sat\n";
display_result(ctx);
break;
}
case l_false:
ctx.regular_stream() << "unsat\n";
break;
case l_undef:
ctx.regular_stream() << "unknown\n";
display_result(ctx);
break;
}
if (p.get_bool("print_statistics", false)) {
display_statistics(ctx);
}
}
void display_result(cmd_context & ctx) {
params_ref p = ctx.params().merge_default_params(ps());
opt::context& opt = get_opt(ctx);
opt.display_assignment(ctx.regular_stream());
opt_params optp(p);
if (optp.print_model()) {
model_ref mdl;
opt.get_model(mdl);
if (mdl) {
ctx.regular_stream() << "(model " << std::endl;
model_smt2_pp(ctx.regular_stream(), ctx, *(mdl.get()), 2);
// m->display(ctx.regular_stream());
ctx.regular_stream() << ")" << std::endl;
}
}
}
private:
void display_statistics(cmd_context& ctx) {
statistics stats;
unsigned long long max_mem = memory::get_max_used_memory();
unsigned long long mem = memory::get_allocation_size();
stats.update("time", ctx.get_seconds());
stats.update("memory", static_cast<double>(mem)/static_cast<double>(1024*1024));
stats.update("max memory", static_cast<double>(max_mem)/static_cast<double>(1024*1024));
get_opt(ctx).collect_statistics(stats);
stats.display_smt2(ctx.regular_stream());
}
};
void install_opt_cmds(cmd_context & ctx) {
ctx.insert(alloc(assert_weighted_cmd));
ctx.insert(alloc(assert_soft_cmd));
ctx.insert(alloc(min_maximize_cmd, true));
ctx.insert(alloc(min_maximize_cmd, false));
ctx.insert(alloc(optimize_cmd));
}