3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-16 13:58:45 +00:00
z3/src/smt/theory_wmaxsat.h
Nikolaj Bjorner d614fedde2 more merges with qsat
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2016-03-19 12:41:41 -07:00

130 lines
4.4 KiB
C++

/*++
Copyright (c) 2013 Microsoft Corporation
Module Name:
theory_wmaxsat.h
Abstract:
Weighted Max-SAT theory plugin.
Author:
Nikolaj Bjorner (nbjorner) 2013-11-05
Notes:
--*/
#ifndef THEORY_WMAXSAT_H_
#define THEORY_WMAXSAT_H_
#include "smt_theory.h"
#include "smt_clause.h"
#include "filter_model_converter.h"
namespace smt {
class theory_wmaxsat : public theory {
struct stats {
unsigned m_num_blocks;
void reset() { memset(this, 0, sizeof(*this)); }
stats() { reset(); }
};
filter_model_converter& m_mc;
mutable unsynch_mpz_manager m_mpz;
app_ref_vector m_vars; // Auxiliary variables per soft clause
expr_ref_vector m_fmls; // Formulas per soft clause
vector<rational> m_rweights; // weights of theory variables.
scoped_mpz_vector m_zweights;
scoped_mpz_vector m_old_values;
svector<theory_var> m_costs; // set of asserted theory variables
svector<theory_var> m_cost_save; // set of asserted theory variables
rational m_rcost; // current sum of asserted costs
rational m_rmin_cost; // current maximal cost assignment.
scoped_mpz m_zcost; // current sum of asserted costs
scoped_mpz m_zmin_cost; // current maximal cost assignment.
bool m_found_optimal;
u_map<theory_var> m_bool2var; // bool_var -> theory_var
svector<bool_var> m_var2bool; // theory_var -> bool_var
bool m_propagate;
bool m_normalize;
rational m_den; // lcm of denominators for rational weights.
svector<bool> m_assigned;
stats m_stats;
public:
theory_wmaxsat(ast_manager& m, filter_model_converter& mc);
virtual ~theory_wmaxsat();
void get_assignment(svector<bool>& result);
virtual void init_search_eh();
bool_var assert_weighted(expr* fml, rational const& w);
bool_var register_var(app* var, bool attach);
rational const& get_min_cost();
class numeral_trail : public trail<context> {
typedef scoped_mpz T;
T & m_value;
scoped_mpz_vector& m_old_values;
public:
numeral_trail(T & value, scoped_mpz_vector& old):
m_value(value),
m_old_values(old) {
old.push_back(value);
}
virtual ~numeral_trail() {
}
virtual void undo(context & ctx) {
m_value = m_old_values.back();
m_old_values.shrink(m_old_values.size() - 1);
}
};
virtual void assign_eh(bool_var v, bool is_true);
virtual final_check_status final_check_eh();
virtual bool use_diseqs() const {
return false;
}
virtual bool build_models() const {
return false;
}
void reset_local();
virtual void reset_eh();
virtual theory * mk_fresh(context * new_ctx) { return 0; }
virtual bool internalize_atom(app * atom, bool gate_ctx) { return false; }
virtual bool internalize_term(app * term) { return false; }
virtual void new_eq_eh(theory_var v1, theory_var v2) { }
virtual void new_diseq_eh(theory_var v1, theory_var v2) { }
virtual void display(std::ostream& out) const {}
virtual void collect_statistics(::statistics & st) const {
st.update("wmaxsat num blocks", m_stats.m_num_blocks);
}
virtual bool can_propagate() {
return m_propagate;
}
virtual void propagate();
bool is_optimal() const;
expr_ref mk_block();
expr_ref mk_optimal_block(svector<bool_var> const& ws, rational const& weight);
private:
void block();
void normalize();
class compare_cost {
theory_wmaxsat& m_th;
public:
compare_cost(theory_wmaxsat& t):m_th(t) {}
bool operator() (theory_var v, theory_var w) const {
return m_th.m_mpz.gt(m_th.m_zweights[v], m_th.m_zweights[w]);
}
};
};
};
#endif