3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-12 12:08:18 +00:00
z3/src/smt/smt_consequences.cpp
Nikolaj Bjorner 491b3b34aa tune consequence finding. Factor solver pretty-printing as SMT-LIB into top-level
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2016-08-03 11:14:29 -07:00

324 lines
12 KiB
C++

/*++
Copyright (c) 2006 Microsoft Corporation
Module Name:
smt_consequences.cpp
Abstract:
Tuned consequence finding for smt_context.
Author:
nbjorner 2016-07-28.
Revision History:
--*/
#include "smt_context.h"
#include "ast_util.h"
namespace smt {
expr_ref context::antecedent2fml(uint_set const& vars) {
expr_ref_vector premises(m_manager);
uint_set::iterator it = vars.begin(), end = vars.end();
for (; it != end; ++it) {
expr* e = bool_var2expr(*it);
premises.push_back(get_assignment(*it) != l_false ? e : m_manager.mk_not(e));
}
return mk_and(premises);
}
void context::extract_fixed_consequences(unsigned start, obj_map<expr, expr*>& vars, uint_set const& assumptions, expr_ref_vector& conseq) {
ast_manager& m = m_manager;
pop_to_search_lvl();
literal_vector const& lits = assigned_literals();
unsigned sz = lits.size();
expr* e1, *e2;
expr_ref fml(m);
for (unsigned i = start; i < sz; ++i) {
literal lit = lits[i];
if (lit == true_literal) continue;
expr* e = bool_var2expr(lit.var());
uint_set s;
if (assumptions.contains(lit.var())) {
s.insert(lit.var());
}
else {
b_justification js = get_justification(lit.var());
switch (js.get_kind()) {
case b_justification::CLAUSE: {
clause * cls = js.get_clause();
unsigned num_lits = cls->get_num_literals();
for (unsigned j = 0; j < num_lits; ++j) {
literal lit2 = cls->get_literal(j);
if (lit2.var() != lit.var()) {
s |= m_antecedents.find(lit2.var());
}
}
break;
}
case b_justification::BIN_CLAUSE: {
s |= m_antecedents.find(js.get_literal().var());
break;
}
case b_justification::AXIOM: {
break;
}
case b_justification::JUSTIFICATION: {
literal_vector literals;
m_conflict_resolution->justification2literals(js.get_justification(), literals);
for (unsigned j = 0; j < literals.size(); ++j) {
s |= m_antecedents.find(literals[j].var());
}
break;
}
}
}
m_antecedents.insert(lit.var(), s);
TRACE("context", display_literal_verbose(tout, lit); tout << " " << s << "\n";);
bool found = false;
if (vars.contains(e)) {
found = true;
fml = lit.sign()?m.mk_not(e):e;
vars.erase(e);
}
else if (!lit.sign() && m.is_eq(e, e1, e2)) {
if (vars.contains(e2)) {
std::swap(e1, e2);
}
if (vars.contains(e1) && m.is_value(e2)) {
found = true;
fml = e;
vars.erase(e1);
}
}
if (found) {
fml = m.mk_implies(antecedent2fml(s), fml);
conseq.push_back(fml);
}
}
}
unsigned context::delete_unfixed(obj_map<expr, expr*>& var2val, expr_ref_vector& unfixed) {
ast_manager& m = m_manager;
ptr_vector<expr> to_delete;
obj_map<expr,expr*>::iterator it = var2val.begin(), end = var2val.end();
for (; it != end; ++it) {
expr* k = it->m_key;
expr* v = it->m_value;
if (m.is_bool(k)) {
literal lit = get_literal(k);
switch (get_assignment(lit)) {
case l_true:
if (m.is_false(v)) {
to_delete.push_back(k);
}
else {
force_phase(lit.var(), false);
}
break;
case l_false:
if (m.is_true(v)) {
to_delete.push_back(k);
}
else {
force_phase(lit.var(), true);
}
break;
default:
to_delete.push_back(k);
break;
}
}
else if (e_internalized(k) && m.are_distinct(v, get_enode(k)->get_root()->get_owner())) {
to_delete.push_back(k);
}
}
for (unsigned i = 0; i < to_delete.size(); ++i) {
var2val.remove(to_delete[i]);
unfixed.push_back(to_delete[i]);
}
return to_delete.size();
}
//
// Extract equalities that are congruent at the search level.
//
unsigned context::extract_fixed_eqs(obj_map<expr, expr*>& var2val, expr_ref_vector& conseq) {
ast_manager& m = m_manager;
ptr_vector<expr> to_delete;
expr_ref fml(m), eq(m);
obj_map<expr,expr*>::iterator it = var2val.begin(), end = var2val.end();
for (; it != end; ++it) {
expr* k = it->m_key;
expr* v = it->m_value;
if (!m.is_bool(k) && e_internalized(k) && e_internalized(v) &&
get_enode(k)->get_root() == get_enode(v)->get_root()) {
literal_vector literals;
m_conflict_resolution->eq2literals(get_enode(v), get_enode(k), literals);
uint_set s;
for (unsigned i = 0; i < literals.size(); ++i) {
SASSERT(get_assign_level(literals[i]) <= get_search_level());
s |= m_antecedents.find(literals[i].var());
}
fml = m.mk_eq(k, v);
fml = m.mk_implies(antecedent2fml(s), fml);
conseq.push_back(fml);
to_delete.push_back(k);
for (unsigned i = 0; i < literals.size(); ++i) {
literals[i].neg();
}
eq = mk_eq_atom(k, v);
internalize_formula(eq, false);
literal lit(get_bool_var(eq), true);
literals.push_back(lit);
mk_clause(literals.size(), literals.c_ptr(), 0);
}
}
for (unsigned i = 0; i < to_delete.size(); ++i) {
var2val.remove(to_delete[i]);
}
return to_delete.size();
}
lbool context::get_consequences(expr_ref_vector const& assumptions,
expr_ref_vector const& vars,
expr_ref_vector& conseq,
expr_ref_vector& unfixed) {
m_antecedents.reset();
lbool is_sat = check(assumptions.size(), assumptions.c_ptr());
if (is_sat != l_true) {
return is_sat;
}
obj_map<expr, expr*> var2val;
uint_set _assumptions;
for (unsigned i = 0; i < assumptions.size(); ++i) {
_assumptions.insert(get_literal(assumptions[i]).var());
}
model_ref mdl;
get_model(mdl);
ast_manager& m = m_manager;
expr_ref_vector trail(m);
model_evaluator eval(*mdl.get());
expr_ref val(m);
for (unsigned i = 0; i < vars.size(); ++i) {
eval(vars[i], val);
if (m.is_value(val)) {
trail.push_back(val);
var2val.insert(vars[i], val);
}
else {
unfixed.push_back(vars[i]);
}
}
extract_fixed_consequences(0, var2val, _assumptions, conseq);
unsigned num_units = assigned_literals().size();
app_ref eq(m);
TRACE("context",
tout << "vars: " << vars.size() << "\n";
tout << "lits: " << num_units << "\n";);
m_case_split_queue->init_search_eh();
unsigned num_iterations = 0;
unsigned model_threshold = 2;
unsigned num_unfixed = 0;
unsigned num_fixed_eqs = 0;
unsigned num_reiterations = 0;
while (!var2val.empty()) {
obj_map<expr,expr*>::iterator it = var2val.begin();
expr* e = it->m_key;
expr* val = it->m_value;
push_scope();
unsigned current_level = m_scope_lvl;
literal lit;
if (m.is_bool(e)) {
lit = literal(get_bool_var(e), m.is_true(val));
}
else {
eq = mk_eq_atom(e, val);
internalize_formula(eq, false);
lit = literal(get_bool_var(eq), true);
}
assign(lit, b_justification::mk_axiom(), true);
flet<bool> l(m_searching, true);
while (true) {
is_sat = bounded_search();
TRACE("context", tout << "search result: " << is_sat << "\n";);
if (is_sat != l_true && m_last_search_failure != OK) {
return is_sat;
}
if (is_sat == l_undef) {
TRACE("context", tout << "restart\n";);
inc_limits();
continue;
}
break;
}
if (get_assignment(lit) == l_true) {
var2val.erase(e);
unfixed.push_back(e);
}
else if (get_assign_level(lit) > get_search_level()) {
TRACE("context", tout << "Retry fixing: " << mk_pp(e, m) << "\n";);
pop_to_search_lvl();
++num_reiterations;
continue;
}
else {
TRACE("context", tout << "Fixed: " << mk_pp(e, m) << "\n";);
}
++num_iterations;
bool apply_slow_pass = model_threshold <= num_iterations || num_iterations <= 2;
if (apply_slow_pass) {
num_unfixed += delete_unfixed(var2val, unfixed);
// The next time we check the model is after 1.5 additional iterations.
model_threshold *= 3;
model_threshold /= 2;
}
// repeat until we either have a model with negated literal or
// the literal is implied at base.
extract_fixed_consequences(num_units, var2val, _assumptions, conseq);
num_units = assigned_literals().size();
if (apply_slow_pass) {
num_fixed_eqs += extract_fixed_eqs(var2val, conseq);
IF_VERBOSE(1, verbose_stream() << "(get-consequences"
<< " iterations: " << num_iterations
<< " variables: " << var2val.size()
<< " fixed: " << conseq.size()
<< " unfixed: " << unfixed.size()
<< " fixed-eqs: " << num_fixed_eqs
<< " unfixed-deleted: " << num_unfixed
<< ")\n";);
TRACE("context", tout << "(get-consequences"
<< " iterations: " << num_iterations
<< " variables: " << var2val.size()
<< " fixed: " << conseq.size()
<< " unfixed: " << unfixed.size()
<< " fixed-eqs: " << num_fixed_eqs
<< " unfixed-deleted: " << num_unfixed
<< ")\n";);
}
if (var2val.contains(e)) {
TRACE("context", tout << "Fixed value to " << mk_pp(e, m) << " was not processed\n";);
expr_ref fml(m);
fml = m.mk_eq(e, var2val.find(e));
fml = m.mk_implies(antecedent2fml(m_antecedents[lit.var()]), fml);
conseq.push_back(fml);
var2val.erase(e);
SASSERT(get_assignment(lit) == l_false);
}
}
end_search();
return l_true;
}
}