3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-13 20:38:43 +00:00
z3/src/ast/simplifiers/euf_completion.cpp
2022-11-14 20:01:00 -08:00

330 lines
11 KiB
C++

/*++
Copyright (c) 2022 Microsoft Corporation
Module Name:
euf_completion.cpp
Abstract:
Ground completion for equalities
Author:
Nikolaj Bjorner (nbjorner) 2022-10-30
Notes:
Create a congruence closure of E.
Select _simplest_ term in each equivalence class. A term is _simplest_
if it is smallest in a well-order, such as a ground Knuth-Bendix order.
A basic approach is terms that are of smallest depth, are values can be chosen as simplest.
Ties between equal-depth terms can be resolved arbitrarily.
Algorithm for extracting canonical form from an E-graph:
* Compute function canon(t) that maps every term in E to a canonical, least with respect to well-order relative to the congruence closure.
That is, terms that are equal modulo the congruence closure have the same canonical representative.
* Each f(t) = g(s) in E:
* add f(canon(t)) = canon(f(t)), g(canon(s)) = canon(g(s)) where canon(f(t)) = canon(g(s)) by construction.
* Each other g(t) in E:
* add g(canon(t)) to E.
* Note that canon(g(t)) = true because g(t) = true is added to congruence closure of E.
* We claim the new formula is equivalent.
* The dependencies for each rewrite can be computed by following the equality justification data-structure.
--*/
#include "ast/ast_pp.h"
#include "ast/ast_util.h"
#include "ast/euf/euf_egraph.h"
#include "ast/simplifiers/euf_completion.h"
namespace euf {
completion::completion(ast_manager& m, dependent_expr_state& fmls):
dependent_expr_simplifier(m, fmls),
m_egraph(m),
m_canonical(m),
m_eargs(m),
m_deps(m),
m_rewriter(m) {
m_tt = m_egraph.mk(m.mk_true(), 0, 0, nullptr);
m_ff = m_egraph.mk(m.mk_false(), 0, 0, nullptr);
}
void completion::reduce() {
++m_epoch;
add_egraph();
map_canonical();
read_egraph();
}
void completion::add_egraph() {
m_nodes.reset();
unsigned sz = m_fmls.size();
expr* x, *y;
for (unsigned i = m_qhead; i < sz; ++i) {
auto [f,d] = m_fmls[i]();
auto* n = mk_enode(f);
if (m.is_eq(f, x, y))
m_egraph.merge(n->get_arg(0), n->get_arg(1), d);
if (m.is_not(f, x))
m_egraph.merge(n->get_arg(0), m_ff, d);
else
m_egraph.merge(n, m_tt, d);
}
m_egraph.propagate();
}
void completion::read_egraph() {
if (m_egraph.inconsistent()) {
auto* d = explain_conflict();
dependent_expr de(m, m.mk_false(), d);
m_fmls.update(0, de);
return;
}
unsigned sz = m_fmls.size();
for (unsigned i = m_qhead; i < sz; ++i) {
auto [f, d] = m_fmls[i]();
expr_dependency_ref dep(d, m);
expr_ref g = canonize_fml(f, dep);
if (g != f) {
m_fmls.update(i, dependent_expr(m, g, dep));
m_stats.m_num_rewrites++;
IF_VERBOSE(11, verbose_stream() << mk_bounded_pp(f, m, 3) << " -> " << mk_bounded_pp(g, m, 3) << "\n");
}
CTRACE("euf_completion", g != f, tout << mk_bounded_pp(f, m) << " -> " << mk_bounded_pp(g, m) << "\n");
}
advance_qhead(m_fmls.size());
}
enode* completion::mk_enode(expr* e) {
m_todo.push_back(e);
enode* n;
while (!m_todo.empty()) {
e = m_todo.back();
if (m_egraph.find(e)) {
m_todo.pop_back();
continue;
}
if (!is_app(e)) {
m_nodes.push_back(m_egraph.mk(e, 0, 0, nullptr));
m_todo.pop_back();
continue;
}
m_args.reset();
unsigned sz = m_todo.size();
for (expr* arg : *to_app(e)) {
n = m_egraph.find(arg);
if (n)
m_args.push_back(n);
else
m_todo.push_back(arg);
}
if (sz == m_todo.size()) {
m_nodes.push_back(m_egraph.mk(e, 0, m_args.size(), m_args.data()));
m_todo.pop_back();
}
}
return m_egraph.find(e);
}
expr_ref completion::canonize_fml(expr* f, expr_dependency_ref& d) {
expr* x, * y;
if (m.is_eq(f, x, y)) {
expr_ref x1 = canonize(x, d);
expr_ref y1 = canonize(y, d);
if (x == x1 && y == y1)
return expr_ref(f, m);
if (x1 == y1)
return expr_ref(m.mk_true(), m);
else {
expr* c = get_canonical(x, d);
if (c == x1)
return expr_ref(m.mk_eq(y1, c), m);
else if (c == y1)
return expr_ref(m.mk_eq(x1, c), m);
else
return expr_ref(m.mk_and(m.mk_eq(x1, c), m.mk_eq(y1, c)), m);
}
}
if (m.is_not(f, x)) {
expr_ref x1 = canonize(x, d);
return expr_ref(mk_not(m, x1), m);
}
return canonize(f, d);
}
expr_ref completion::canonize(expr* f, expr_dependency_ref& d) {
if (!is_app(f))
return expr_ref(f, m); // todo could normalize ground expressions under quantifiers
m_eargs.reset();
bool change = false;
for (expr* arg : *to_app(f)) {
m_eargs.push_back(get_canonical(arg, d));
change |= arg != m_eargs.back();
}
if (!change)
return expr_ref(f, m);
else
return expr_ref(m_rewriter.mk_app(to_app(f)->get_decl(), m_eargs.size(), m_eargs.data()), m);
}
expr* completion::get_canonical(expr* f, expr_dependency_ref& d) {
enode* n = m_egraph.find(f);
enode* r = n->get_root();
d = m.mk_join(d, explain_eq(n, r));
d = m.mk_join(d, m_deps.get(r->get_id(), nullptr));
return m_canonical.get(r->get_id());
}
expr* completion::get_canonical(enode* n) {
if (m_epochs.get(n->get_id(), 0) == m_epoch)
return m_canonical.get(n->get_id());
else
return nullptr;
}
void completion::set_canonical(enode* n, expr* e) {
class vtrail : public trail {
expr_ref_vector& c;
unsigned idx;
expr_ref old_value;
public:
vtrail(expr_ref_vector& c, unsigned idx) :
c(c), idx(idx), old_value(c.get(idx), c.m()) {
}
void undo() override {
c[idx] = old_value;
old_value = nullptr;
}
};
if (num_scopes() > 0)
m_trail.push(vtrail(m_canonical, n->get_id()));
m_canonical.setx(n->get_id(), e);
m_epochs.setx(n->get_id(), m_epoch, 0);
}
expr_dependency* completion::explain_eq(enode* a, enode* b) {
if (a == b)
return nullptr;
ptr_vector<expr_dependency> just;
m_egraph.begin_explain();
m_egraph.explain_eq(just, nullptr, a, b);
m_egraph.end_explain();
expr_dependency* d = nullptr;
for (expr_dependency* d2 : just)
d = m.mk_join(d, d2);
return d;
}
expr_dependency* completion::explain_conflict() {
ptr_vector<expr_dependency> just;
m_egraph.begin_explain();
m_egraph.explain(just, nullptr);
m_egraph.end_explain();
expr_dependency* d = nullptr;
for (expr_dependency* d2 : just)
d = m.mk_join(d, d2);
return d;
}
void completion::collect_statistics(statistics& st) const {
st.update("euf-completion-rewrites", m_stats.m_num_rewrites);
}
void completion::map_canonical() {
m_todo.reset();
enode_vector roots;
for (unsigned i = 0; i < m_nodes.size(); ++i) {
enode* n = m_nodes[i]->get_root();
if (n->is_marked1())
continue;
n->mark1();
roots.push_back(n);
enode* rep = nullptr;
for (enode* k : enode_class(n))
if (!rep || m.is_value(k->get_expr()) || get_depth(rep->get_expr()) > get_depth(k->get_expr()))
rep = k;
m_reps.setx(n->get_id(), rep, nullptr);
TRACE("euf_completion", tout << "rep " << m_egraph.bpp(n) << " -> " << m_egraph.bpp(rep) << "\n";
for (enode* k : enode_class(n)) tout << m_egraph.bpp(k) << "\n";);
m_todo.push_back(n->get_expr());
for (enode* arg : enode_args(n)) {
arg = arg->get_root();
if (!arg->is_marked1())
m_nodes.push_back(arg);
}
}
for (enode* r : roots)
r->unmark1();
// explain dependencies when no nodes are marked.
// explain_eq uses both mark1 and mark2 on e-nodes so
// we cannot call it inside the previous loop where mark1 is used
// to track which roots have been processed.
for (enode* r : roots) {
enode* rep = m_reps[r->get_id()];
auto* d = explain_eq(r, rep);
m_deps.setx(r->get_id(), d);
}
expr_ref new_expr(m);
while (!m_todo.empty()) {
expr* e = m_todo.back();
enode* n = m_egraph.find(e);
SASSERT(n->is_root());
enode* rep = m_reps[n->get_id()];
if (get_canonical(n))
m_todo.pop_back();
else if (get_depth(rep->get_expr()) == 0 || !is_app(rep->get_expr())) {
set_canonical(n, rep->get_expr());
m_todo.pop_back();
}
else {
m_eargs.reset();
unsigned sz = m_todo.size();
bool new_arg = false;
expr_dependency* d = m_deps.get(n->get_id(), nullptr);
for (enode* arg : enode_args(rep)) {
enode* rarg = arg->get_root();
expr* c = get_canonical(rarg);
if (c) {
m_eargs.push_back(c);
new_arg |= c != arg->get_expr();
d = m.mk_join(d, m_deps.get(rarg->get_id(), nullptr));
}
else
m_todo.push_back(rarg->get_expr());
}
if (sz == m_todo.size()) {
m_todo.pop_back();
if (new_arg)
new_expr = m_rewriter.mk_app(to_app(rep->get_expr())->get_decl(), m_eargs.size(), m_eargs.data());
else
new_expr = rep->get_expr();
set_canonical(n, new_expr);
m_deps.setx(n->get_id(), d);
}
}
}
}
}