mirror of
https://github.com/Z3Prover/z3
synced 2025-04-12 12:08:18 +00:00
600 lines
24 KiB
C++
600 lines
24 KiB
C++
/*++
|
|
Copyright (c) 2006 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
smt_consequences.cpp
|
|
|
|
Abstract:
|
|
|
|
Tuned consequence finding for smt_context.
|
|
|
|
Author:
|
|
|
|
nbjorner 2016-07-28.
|
|
|
|
Revision History:
|
|
|
|
--*/
|
|
#include "smt_context.h"
|
|
#include "ast_util.h"
|
|
#include "datatype_decl_plugin.h"
|
|
#include "model_pp.h"
|
|
|
|
namespace smt {
|
|
|
|
expr_ref context::antecedent2fml(index_set const& vars) {
|
|
expr_ref_vector premises(m_manager);
|
|
index_set::iterator it = vars.begin(), end = vars.end();
|
|
for (; it != end; ++it) {
|
|
expr* e = bool_var2expr(*it);
|
|
premises.push_back(get_assignment(*it) != l_false ? e : m_manager.mk_not(e));
|
|
}
|
|
return mk_and(premises);
|
|
}
|
|
|
|
//
|
|
// The literal lit is assigned at the search level, so it follows from the assumptions.
|
|
// We retrieve the set of assumptions it depends on in the set 's'.
|
|
// The map m_antecedents contains the association from these literals to the assumptions they depend on.
|
|
// We then examine the contents of the literal lit and augment the set of consequences in one of the following cases:
|
|
// - e is a propositional atom and it is one of the variables that is to be fixed.
|
|
// - e is an equality between a variable and value that is to be fixed.
|
|
// - e is a data-type recognizer of a variable that is to be fixed.
|
|
//
|
|
void context::extract_fixed_consequences(literal lit, obj_map<expr, expr*>& vars, index_set const& assumptions, expr_ref_vector& conseq) {
|
|
ast_manager& m = m_manager;
|
|
datatype_util dt(m);
|
|
expr* e1, *e2;
|
|
expr_ref fml(m);
|
|
if (lit == true_literal) return;
|
|
expr* e = bool_var2expr(lit.var());
|
|
index_set s;
|
|
if (assumptions.contains(lit.var())) {
|
|
s.insert(lit.var());
|
|
}
|
|
else {
|
|
b_justification js = get_justification(lit.var());
|
|
switch (js.get_kind()) {
|
|
case b_justification::CLAUSE: {
|
|
clause * cls = js.get_clause();
|
|
if (!cls) break;
|
|
unsigned num_lits = cls->get_num_literals();
|
|
for (unsigned j = 0; j < num_lits; ++j) {
|
|
literal lit2 = cls->get_literal(j);
|
|
if (lit2.var() != lit.var()) {
|
|
s |= m_antecedents.find(lit2.var());
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case b_justification::BIN_CLAUSE: {
|
|
s |= m_antecedents.find(js.get_literal().var());
|
|
break;
|
|
}
|
|
case b_justification::AXIOM: {
|
|
break;
|
|
}
|
|
case b_justification::JUSTIFICATION: {
|
|
literal_vector literals;
|
|
m_conflict_resolution->justification2literals(js.get_justification(), literals);
|
|
for (unsigned j = 0; j < literals.size(); ++j) {
|
|
s |= m_antecedents.find(literals[j].var());
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
m_antecedents.insert(lit.var(), s);
|
|
TRACE("context", display_literal_verbose(tout, lit);
|
|
for (index_set::iterator it = s.begin(), end = s.end(); it != end; ++it) {
|
|
tout << " " << *it;
|
|
}
|
|
tout << "\n";);
|
|
bool found = false;
|
|
if (vars.contains(e)) {
|
|
found = true;
|
|
fml = lit.sign() ? m.mk_not(e) : e;
|
|
vars.erase(e);
|
|
}
|
|
else if (!lit.sign() && m.is_eq(e, e1, e2)) {
|
|
if (vars.contains(e2)) {
|
|
std::swap(e1, e2);
|
|
}
|
|
if (vars.contains(e1) && m.is_value(e2)) {
|
|
found = true;
|
|
fml = e;
|
|
vars.erase(e1);
|
|
}
|
|
}
|
|
else if (!lit.sign() && is_app(e) && dt.is_recognizer(to_app(e)->get_decl())) {
|
|
if (vars.contains(to_app(e)->get_arg(0))) {
|
|
found = true;
|
|
fml = m.mk_eq(to_app(e)->get_arg(0), m.mk_const(dt.get_recognizer_constructor(to_app(e)->get_decl())));
|
|
vars.erase(to_app(e)->get_arg(0));
|
|
}
|
|
}
|
|
if (found) {
|
|
fml = m.mk_implies(antecedent2fml(s), fml);
|
|
conseq.push_back(fml);
|
|
}
|
|
}
|
|
|
|
void context::extract_fixed_consequences(unsigned& start, obj_map<expr, expr*>& vars, index_set const& assumptions, expr_ref_vector& conseq) {
|
|
pop_to_search_lvl();
|
|
SASSERT(!inconsistent());
|
|
literal_vector const& lits = assigned_literals();
|
|
unsigned sz = lits.size();
|
|
for (unsigned i = start; i < sz; ++i) {
|
|
extract_fixed_consequences(lits[i], vars, assumptions, conseq);
|
|
}
|
|
start = sz;
|
|
SASSERT(!inconsistent());
|
|
}
|
|
|
|
|
|
//
|
|
// The assignment stack is assumed consistent.
|
|
// For each Boolean variable, we check if there is a literal assigned to the
|
|
// opposite value of the reference model, and for non-Boolean variables we
|
|
// check if the current state forces the variable to be distinct from the reference value.
|
|
//
|
|
// For yet to be determined Boolean variables we furthermore force the phase to be opposite
|
|
// to the reference value in the attempt to let the sat engine emerge with a model that
|
|
// rules out as many non-fixed variables as possible.
|
|
//
|
|
|
|
unsigned context::delete_unfixed(obj_map<expr, expr*>& var2val, expr_ref_vector& unfixed) {
|
|
ast_manager& m = m_manager;
|
|
ptr_vector<expr> to_delete;
|
|
obj_map<expr,expr*>::iterator it = var2val.begin(), end = var2val.end();
|
|
for (; it != end; ++it) {
|
|
expr* k = it->m_key;
|
|
expr* v = it->m_value;
|
|
if (m.is_bool(k)) {
|
|
literal lit = get_literal(k);
|
|
switch (get_assignment(lit)) {
|
|
case l_true:
|
|
if (m.is_false(v)) {
|
|
to_delete.push_back(k);
|
|
}
|
|
else {
|
|
force_phase(lit.var(), false);
|
|
}
|
|
break;
|
|
case l_false:
|
|
if (m.is_true(v)) {
|
|
to_delete.push_back(k);
|
|
}
|
|
else {
|
|
force_phase(lit.var(), true);
|
|
}
|
|
break;
|
|
default:
|
|
to_delete.push_back(k);
|
|
break;
|
|
}
|
|
}
|
|
else if (e_internalized(k) && m.are_distinct(v, get_enode(k)->get_root()->get_owner())) {
|
|
to_delete.push_back(k);
|
|
}
|
|
else if (get_assignment(mk_diseq(k, v)) == l_true) {
|
|
to_delete.push_back(k);
|
|
}
|
|
}
|
|
for (unsigned i = 0; i < to_delete.size(); ++i) {
|
|
var2val.remove(to_delete[i]);
|
|
unfixed.push_back(to_delete[i]);
|
|
}
|
|
return to_delete.size();
|
|
}
|
|
|
|
#define are_equal(v, k) (e_internalized(k) && e_internalized(v) && get_enode(k)->get_root() == get_enode(v)->get_root())
|
|
|
|
//
|
|
// Extract equalities that are congruent at the search level.
|
|
// Add a clause to short-circuit the congruence justifications for
|
|
// next rounds.
|
|
//
|
|
unsigned context::extract_fixed_eqs(obj_map<expr, expr*>& var2val, expr_ref_vector& conseq) {
|
|
TRACE("context", tout << "extract fixed consequences\n";);
|
|
ast_manager& m = m_manager;
|
|
ptr_vector<expr> to_delete;
|
|
expr_ref fml(m), eq(m);
|
|
obj_map<expr,expr*>::iterator it = var2val.begin(), end = var2val.end();
|
|
for (; it != end; ++it) {
|
|
expr* k = it->m_key;
|
|
expr* v = it->m_value;
|
|
if (!m.is_bool(k) && are_equal(k, v)) {
|
|
literal_vector literals;
|
|
m_conflict_resolution->eq2literals(get_enode(v), get_enode(k), literals);
|
|
index_set s;
|
|
for (unsigned i = 0; i < literals.size(); ++i) {
|
|
SASSERT(get_assign_level(literals[i]) <= get_search_level());
|
|
s |= m_antecedents.find(literals[i].var());
|
|
}
|
|
|
|
fml = m.mk_eq(k, v);
|
|
fml = m.mk_implies(antecedent2fml(s), fml);
|
|
conseq.push_back(fml);
|
|
to_delete.push_back(k);
|
|
|
|
for (unsigned i = 0; i < literals.size(); ++i) {
|
|
literals[i].neg();
|
|
}
|
|
literal lit = mk_diseq(k, v);
|
|
literals.push_back(lit);
|
|
mk_clause(literals.size(), literals.c_ptr(), 0);
|
|
TRACE("context", display_literals_verbose(tout, literals.size(), literals.c_ptr()););
|
|
}
|
|
}
|
|
for (unsigned i = 0; i < to_delete.size(); ++i) {
|
|
var2val.remove(to_delete[i]);
|
|
}
|
|
return to_delete.size();
|
|
}
|
|
|
|
literal context::mk_diseq(expr* e, expr* val) {
|
|
ast_manager& m = m_manager;
|
|
if (m.is_bool(e)) {
|
|
return literal(get_bool_var(e), m.is_true(val));
|
|
}
|
|
else {
|
|
expr_ref eq(mk_eq_atom(e, val), m);
|
|
internalize_formula(eq, false);
|
|
return literal(get_bool_var(eq), true);
|
|
}
|
|
}
|
|
|
|
lbool context::get_consequences(expr_ref_vector const& assumptions,
|
|
expr_ref_vector const& vars,
|
|
expr_ref_vector& conseq,
|
|
expr_ref_vector& unfixed) {
|
|
|
|
m_antecedents.reset();
|
|
pop_to_base_lvl();
|
|
lbool is_sat = check(assumptions.size(), assumptions.c_ptr());
|
|
if (is_sat != l_true) {
|
|
return is_sat;
|
|
}
|
|
obj_map<expr, expr*> var2val;
|
|
index_set _assumptions;
|
|
for (unsigned i = 0; i < assumptions.size(); ++i) {
|
|
_assumptions.insert(get_literal(assumptions[i]).var());
|
|
}
|
|
model_ref mdl;
|
|
get_model(mdl);
|
|
ast_manager& m = m_manager;
|
|
expr_ref_vector trail(m);
|
|
model_evaluator eval(*mdl.get());
|
|
expr_ref val(m);
|
|
TRACE("context", model_pp(tout, *mdl););
|
|
for (unsigned i = 0; i < vars.size(); ++i) {
|
|
eval(vars[i], val);
|
|
if (m.is_value(val)) {
|
|
trail.push_back(val);
|
|
var2val.insert(vars[i], val);
|
|
}
|
|
else {
|
|
unfixed.push_back(vars[i]);
|
|
}
|
|
}
|
|
unsigned num_units = 0;
|
|
extract_fixed_consequences(num_units, var2val, _assumptions, conseq);
|
|
app_ref eq(m);
|
|
TRACE("context",
|
|
tout << "vars: " << vars.size() << "\n";
|
|
tout << "lits: " << num_units << "\n";);
|
|
m_case_split_queue->init_search_eh();
|
|
unsigned num_iterations = 0;
|
|
unsigned model_threshold = 2;
|
|
unsigned num_fixed_eqs = 0;
|
|
unsigned num_reiterations = 0;
|
|
while (!var2val.empty()) {
|
|
obj_map<expr,expr*>::iterator it = var2val.begin();
|
|
expr* e = it->m_key;
|
|
expr* val = it->m_value;
|
|
|
|
TRACE("context", tout << "scope level: " << get_scope_level() << "\n";);
|
|
SASSERT(!inconsistent());
|
|
|
|
//
|
|
// The current variable is checked to be a backbone
|
|
// We add the negation of the reference assignment to the variable.
|
|
// If the variable is a Boolean, it means adding literal that has
|
|
// the opposite value of the current reference model.
|
|
// If the variable is a non-Boolean, it means adding a disequality.
|
|
//
|
|
literal lit = mk_diseq(e, val);
|
|
mark_as_relevant(lit);
|
|
push_scope();
|
|
assign(lit, b_justification::mk_axiom(), true);
|
|
flet<bool> l(m_searching, true);
|
|
|
|
//
|
|
// We check if the current assignment stack can be extended to a
|
|
// satisfying assignment. bounded search may decide to restart,
|
|
// in which case it returns l_undef and clears search failure.
|
|
//
|
|
while (true) {
|
|
is_sat = bounded_search();
|
|
TRACE("context", tout << "search result: " << is_sat << "\n";);
|
|
if (is_sat != l_true && m_last_search_failure != OK) {
|
|
return is_sat;
|
|
}
|
|
if (is_sat == l_undef) {
|
|
TRACE("context", tout << "restart\n";);
|
|
inc_limits();
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
//
|
|
// If the state is satisfiable with the current variable assigned to
|
|
// a different value from the reference model, it is unfixed.
|
|
//
|
|
// If it is assigned above the search level we can't conclude anything
|
|
// about its value.
|
|
// extract_fixed_consequences pops the assignment stack to the search level
|
|
// so this sets up the state to retry finding fixed values.
|
|
//
|
|
// Otherwise, the variable is fixed.
|
|
// - it is either assigned at the search level to l_false, or
|
|
// - the state is l_false, which means that the variable is fixed by
|
|
// the background constraints (and does not depend on assumptions).
|
|
//
|
|
if (is_sat == l_true && get_assignment(lit) == l_true && is_relevant(lit)) {
|
|
var2val.erase(e);
|
|
unfixed.push_back(e);
|
|
SASSERT(!are_equal(e, val));
|
|
TRACE("context", tout << mk_pp(e, m) << " is unfixed\n";
|
|
display_literal_verbose(tout, lit); tout << "\n";
|
|
tout << "relevant: " << is_relevant(lit) << "\n";
|
|
display(tout););
|
|
}
|
|
else if (is_sat == l_true && (get_assign_level(lit) > get_search_level() || !is_relevant(lit))) {
|
|
TRACE("context", tout << "Retry fixing: " << mk_pp(e, m) << "\n";);
|
|
extract_fixed_consequences(num_units, var2val, _assumptions, conseq);
|
|
++num_reiterations;
|
|
continue;
|
|
}
|
|
else {
|
|
//
|
|
// The state can be labeled as inconsistent when the implied consequence does
|
|
// not depend on assumptions, then the conflict level sits at the search level
|
|
// which causes the conflict resolver to decide that the state is unsat.
|
|
//
|
|
if (l_false == is_sat) {
|
|
SASSERT(inconsistent());
|
|
m_conflict = null_b_justification;
|
|
m_not_l = null_literal;
|
|
}
|
|
TRACE("context", tout << "Fixed: " << mk_pp(e, m) << " " << is_sat << "\n";
|
|
if (is_sat == l_false) display(tout););
|
|
|
|
}
|
|
++num_iterations;
|
|
|
|
//
|
|
// Check the slow pass: it retrieves an updated model and checks if the
|
|
// values in the updated model differ from the values in the reference
|
|
// model.
|
|
//
|
|
bool apply_slow_pass = model_threshold <= num_iterations || num_iterations <= 2;
|
|
if (apply_slow_pass && is_sat == l_true) {
|
|
delete_unfixed(var2val, unfixed);
|
|
// The next time we check the model is after 1.5 additional iterations.
|
|
model_threshold *= 3;
|
|
model_threshold /= 2;
|
|
}
|
|
|
|
//
|
|
// Walk the assignment stack at level 1 for learned consequences.
|
|
// The current literal should be assigned at the search level unless
|
|
// the state is is_sat == l_true and the assignment to lit is l_true.
|
|
// This condition is checked above.
|
|
//
|
|
extract_fixed_consequences(num_units, var2val, _assumptions, conseq);
|
|
|
|
//
|
|
// Fixed equalities can be extracted by walking all variables and checking
|
|
// if the congruence roots are equal at the search level.
|
|
//
|
|
if (apply_slow_pass) {
|
|
num_fixed_eqs += extract_fixed_eqs(var2val, conseq);
|
|
IF_VERBOSE(1, display_consequence_progress(verbose_stream(), num_iterations, var2val.size(), conseq.size(),
|
|
unfixed.size(), num_fixed_eqs););
|
|
TRACE("context", display_consequence_progress(tout, num_iterations, var2val.size(), conseq.size(),
|
|
unfixed.size(), num_fixed_eqs););
|
|
}
|
|
TRACE("context", tout << "finishing " << mk_pp(e, m) << "\n";);
|
|
SASSERT(!inconsistent());
|
|
|
|
//
|
|
// This becomes unnecessary when the fixed consequence are
|
|
// completely extracted.
|
|
//
|
|
if (var2val.contains(e)) {
|
|
TRACE("context", tout << "Fixed value to " << mk_pp(e, m) << " was not processed\n";);
|
|
expr_ref fml(m);
|
|
fml = m.mk_eq(e, var2val.find(e));
|
|
if (!m_antecedents.contains(lit.var())) {
|
|
extract_fixed_consequences(lit, var2val, _assumptions, conseq);
|
|
}
|
|
fml = m.mk_implies(antecedent2fml(m_antecedents[lit.var()]), fml);
|
|
conseq.push_back(fml);
|
|
var2val.erase(e);
|
|
}
|
|
}
|
|
end_search();
|
|
DEBUG_CODE(validate_consequences(assumptions, vars, conseq, unfixed););
|
|
return l_true;
|
|
}
|
|
|
|
lbool context::get_consequences2(expr_ref_vector const& assumptions,
|
|
expr_ref_vector const& vars,
|
|
expr_ref_vector& conseq,
|
|
expr_ref_vector& unfixed) {
|
|
|
|
m_antecedents.reset();
|
|
pop_to_base_lvl();
|
|
lbool is_sat = check(assumptions.size(), assumptions.c_ptr());
|
|
if (is_sat != l_true) {
|
|
TRACE("context", tout << is_sat << "\n";);
|
|
return is_sat;
|
|
}
|
|
obj_map<expr, expr*> var2val;
|
|
index_set _assumptions;
|
|
for (unsigned i = 0; i < assumptions.size(); ++i) {
|
|
_assumptions.insert(get_literal(assumptions[i]).var());
|
|
}
|
|
model_ref mdl;
|
|
get_model(mdl);
|
|
ast_manager& m = m_manager;
|
|
expr_ref_vector trail(m);
|
|
model_evaluator eval(*mdl.get());
|
|
expr_ref val(m);
|
|
TRACE("context", model_pp(tout, *mdl););
|
|
for (unsigned i = 0; i < vars.size(); ++i) {
|
|
eval(vars[i], val);
|
|
if (m.is_value(val)) {
|
|
trail.push_back(val);
|
|
var2val.insert(vars[i], val);
|
|
}
|
|
else {
|
|
unfixed.push_back(vars[i]);
|
|
}
|
|
}
|
|
unsigned num_units = 0;
|
|
extract_fixed_consequences(num_units, var2val, _assumptions, conseq);
|
|
app_ref eq(m);
|
|
TRACE("context",
|
|
tout << "vars: " << vars.size() << "\n";
|
|
tout << "lits: " << num_units << "\n";);
|
|
m_case_split_queue->init_search_eh();
|
|
unsigned num_iterations = 0;
|
|
unsigned num_fixed_eqs = 0;
|
|
unsigned chunk_size = 100;
|
|
|
|
while (!var2val.empty()) {
|
|
obj_map<expr,expr*>::iterator it = var2val.begin(), end = var2val.end();
|
|
unsigned num_vars = 0;
|
|
for (; it != end && num_vars < chunk_size; ++it) {
|
|
if (get_cancel_flag()) {
|
|
return l_undef;
|
|
}
|
|
expr* e = it->m_key;
|
|
expr* val = it->m_value;
|
|
literal lit = mk_diseq(e, val);
|
|
mark_as_relevant(lit);
|
|
if (get_assignment(lit) != l_undef) {
|
|
continue;
|
|
}
|
|
++num_vars;
|
|
push_scope();
|
|
assign(lit, b_justification::mk_axiom(), true);
|
|
if (!propagate()) {
|
|
if (!resolve_conflict() || inconsistent()) {
|
|
TRACE("context", tout << "inconsistent\n";);
|
|
SASSERT(inconsistent());
|
|
m_conflict = null_b_justification;
|
|
m_not_l = null_literal;
|
|
SASSERT(m_search_lvl == get_search_level());
|
|
}
|
|
}
|
|
}
|
|
SASSERT(!inconsistent());
|
|
++num_iterations;
|
|
|
|
lbool is_sat = l_undef;
|
|
while (true) {
|
|
is_sat = bounded_search();
|
|
if (is_sat != l_true && m_last_search_failure != OK) {
|
|
return is_sat;
|
|
}
|
|
if (is_sat == l_undef) {
|
|
IF_VERBOSE(1, verbose_stream() << "(get-consequences inc-limits)\n";);
|
|
inc_limits();
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
if (is_sat == l_false) {
|
|
SASSERT(inconsistent());
|
|
m_conflict = null_b_justification;
|
|
m_not_l = null_literal;
|
|
}
|
|
if (is_sat == l_true) {
|
|
delete_unfixed(var2val, unfixed);
|
|
}
|
|
extract_fixed_consequences(num_units, var2val, _assumptions, conseq);
|
|
num_fixed_eqs += extract_fixed_eqs(var2val, conseq);
|
|
IF_VERBOSE(1, display_consequence_progress(verbose_stream(), num_iterations, var2val.size(), conseq.size(),
|
|
unfixed.size(), num_fixed_eqs););
|
|
TRACE("context", display_consequence_progress(tout, num_iterations, var2val.size(), conseq.size(),
|
|
unfixed.size(), num_fixed_eqs););
|
|
}
|
|
|
|
end_search();
|
|
DEBUG_CODE(validate_consequences(assumptions, vars, conseq, unfixed););
|
|
return l_true;
|
|
}
|
|
|
|
|
|
void context::display_consequence_progress(std::ostream& out, unsigned it, unsigned nv, unsigned fixed, unsigned unfixed, unsigned eq) {
|
|
out << "(get-consequences"
|
|
<< " iterations: " << it
|
|
<< " variables: " << nv
|
|
<< " fixed: " << fixed
|
|
<< " unfixed: " << unfixed
|
|
<< " fixed-eqs: " << eq
|
|
<< ")\n";
|
|
}
|
|
|
|
|
|
//
|
|
// Validate, in a slow pass, that the current consequences are correctly
|
|
// extracted.
|
|
//
|
|
void context::validate_consequences(expr_ref_vector const& assumptions, expr_ref_vector const& vars,
|
|
expr_ref_vector const& conseq, expr_ref_vector const& unfixed) {
|
|
ast_manager& m = m_manager;
|
|
expr_ref tmp(m);
|
|
SASSERT(!inconsistent());
|
|
for (unsigned i = 0; i < conseq.size(); ++i) {
|
|
push();
|
|
for (unsigned j = 0; j < assumptions.size(); ++j) {
|
|
assert_expr(assumptions[j]);
|
|
}
|
|
TRACE("context", tout << "checking: " << mk_pp(conseq[i], m) << "\n";);
|
|
tmp = m.mk_not(conseq[i]);
|
|
assert_expr(tmp);
|
|
lbool is_sat = check();
|
|
SASSERT(is_sat != l_true);
|
|
pop(1);
|
|
}
|
|
model_ref mdl;
|
|
for (unsigned i = 0; i < unfixed.size(); ++i) {
|
|
push();
|
|
for (unsigned j = 0; j < assumptions.size(); ++j) {
|
|
assert_expr(assumptions[j]);
|
|
}
|
|
TRACE("context", tout << "checking unfixed: " << mk_pp(unfixed[i], m) << "\n";);
|
|
lbool is_sat = check();
|
|
SASSERT(is_sat != l_false);
|
|
if (is_sat == l_true) {
|
|
get_model(mdl);
|
|
mdl->eval(unfixed[i], tmp);
|
|
if (m.is_value(tmp)) {
|
|
tmp = m.mk_not(m.mk_eq(unfixed[i], tmp));
|
|
assert_expr(tmp);
|
|
is_sat = check();
|
|
SASSERT(is_sat != l_false);
|
|
}
|
|
}
|
|
pop(1);
|
|
}
|
|
}
|
|
|
|
}
|