3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-11-13 01:21:14 +00:00
z3/src/math/polysat/simplify_clause.cpp
Jakob Rath 0c62b81a56 Rename confusing methods
avoid difference between c.is_eq() and c->is_eq()
2023-06-23 11:59:18 +02:00

802 lines
29 KiB
C++

/*++
Copyright (c) 2022 Microsoft Corporation
Module Name:
Clause Simplification
Author:
Jakob Rath, Nikolaj Bjorner (nbjorner) 2022-08-22
Notes:
TODO: from test_ineq_basic5: (mod 2^4)
Lemma: -0 \/ -1 \/ 2 \/ 3
-0: -4 > v1 + v0 [ bvalue=l_false @0 pwatched=1 ]
-1: v1 > 2 [ bvalue=l_false @0 pwatched=1 ]
2: -3 <= -1*v0 + -7 [ bvalue=l_undef pwatched=0 ]
3: -4 <= v0 [ bvalue=l_undef pwatched=0 ]
2 ==> v0 \not\in [0;12[
3 ==> v0 \not\in [13;10[
A value is "truly" forbidden if neither branch works:
v0 \not\in [0;12[ intersect [13;10[ == [0;10[
==> replace 2, 3 by single constraint 10 <= v0
TODO: from bench1:
Lemma: 12 \/ -26 \/ 292 \/ 294 \/ 295
12: v11 <= v10 + v0 [ l_false assert@0 pwatched active ]
-26: v12 + -1*v11 != 0 [ l_false assert@0 pwatched active ]
292: v10 + v0 + 1 == 0 [ l_false eval@6 pwatched active ]
294: v12 + -1*v10 + -1*v0 + -1 == 0 [ l_undef ]
295: v10 + v0 + 1 <= v12 [ l_undef ]
292: v10 + v0 + 1 == 0
294: v10 + v0 + 1 == v12
295: v10 + v0 + 1 <= v12
==> drop 294 because it implies 295
==> drop 292 because it implies 295
TODO from bench0:
-43 \/ 3 \/ 4 \/ -0 \/ -44 \/ -52
-43: v3 + -1 != 0
3: v3 == 0
4: v3 <= v5
-0: v5 + v4*v3 + -1*v2*v1 != 0
-44: v4 + -1 != 0
-52: v2 != 0
Drop v3 == 0 because it implies v3 - 1 != 0
The try_recognize_bailout returns true, but fails to simplify any other literal.
Overall, why return true immediately if there are other literals that subsume each-other?
TODO: connect disjoint intervals
For example, rewrite:
p < a \/ b <= p
<=> ~ (a <= p < b)
<=> ~ (p - a < b - a)
<=> p - a >= b - a
(similar for other combinations of <, <=)
--*/
#include "math/polysat/solver.h"
#include "math/polysat/simplify_clause.h"
namespace polysat {
simplify_clause::simplify_clause(solver& s):
s(s)
{}
bool simplify_clause::apply(clause& cl) {
LOG_H1("Simplifying clause: " << cl);
bool simplified = false;
if (try_remove_equations(cl))
simplified = true;
#if 0
if (try_recognize_bailout(cl))
simplified = true;
#endif
if (try_equal_body_subsumptions(cl))
simplified = true;
#if 0
if (try_bit_subsumptions(cl))
simplified = true;
#endif
return simplified;
}
/**
* If we have:
* p <= q
* p - q == 0
* Then remove the equality.
*
* If we have:
* p < q
* p - q == 0
* Then merge into p <= q.
*/
bool simplify_clause::try_remove_equations(clause& cl) {
LOG_H2("Remove superfluous equations from: " << cl);
bool const has_eqn = any_of(cl, [&](sat::literal lit) { return !lit.sign() && s.lit2cnstr(lit)->is_eq(); });
if (!has_eqn)
return false;
bool any_removed = false;
bool_vector& should_remove = m_bools;
should_remove.fill(cl.size(), false);
for (unsigned i = cl.size(); i-- > 0; ) {
sat::literal const lit = cl[i];
signed_constraint const c = s.lit2cnstr(lit);
if (!c->is_ule())
continue;
if (c->is_eq())
continue;
#if 1
// Disable the case p<q && p=q for now.
// The merging of less-than and equality may remove premises from the lemma.
// See test_band5.
// TODO: fix and re-enable
if (c.is_negative())
continue;
#endif
LOG_V(10, "Examine: " << lit_pp(s, lit));
pdd const p = c->to_ule().lhs();
pdd const q = c->to_ule().rhs();
signed_constraint const eq = s.m_constraints.find_eq(p - q);
if (!eq)
continue;
auto const eq_it = std::find(cl.begin(), cl.end(), eq.blit());
if (eq_it == cl.end())
continue;
unsigned eq_idx = (unsigned)std::distance(cl.begin(), eq_it);
any_removed = true;
should_remove[eq_idx] = true;
if (c.is_positive()) {
// c: p <= q
// eq: p == q
LOG("Removing " << eq.blit() << ": " << eq << " because it subsumes " << cl[i] << ": " << s.lit2cnstr(cl[i]));
}
else {
// c: p > q
// eq: p == q
cl[i] = s.ule(q, p).blit();
LOG("Merge " << eq.blit() << ": " << eq << " and " << lit << ": " << c << " to obtain " << cl[i] << ": " << s.lit2cnstr(cl[i]));
}
}
// Remove superfluous equations
if (!any_removed)
return false;
unsigned j = 0;
for (unsigned i = 0; i < cl.size(); ++i)
if (!should_remove[i])
cl[j++] = cl[i];
cl.m_literals.shrink(j);
return true;
}
// If x != k appears among the new literals, all others are superfluous.
// TODO: this seems to work for lemmas coming from forbidden intervals, but in general it's too naive (esp. for side lemmas).
bool simplify_clause::try_recognize_bailout(clause& cl) {
LOG_H2("Try to find bailout literal");
pvar v = null_var;
sat::literal eq = sat::null_literal;
rational k;
for (sat::literal lit : cl) {
LOG_V(10, "Examine " << lit_pp(s, lit));
lbool status = s.m_bvars.value(lit);
// skip premise literals
if (status == l_false)
continue;
SASSERT(status != l_true); // would be an invalid lemma
SASSERT_EQ(status, l_undef); // new literal
auto c = s.lit2cnstr(lit);
// For now we only handle the case where exactly one variable is
// unassigned among the new constraints
for (pvar w : c->vars()) {
if (s.is_assigned(w))
continue;
if (v == null_var)
v = w;
else if (v != w)
return false;
}
SASSERT(v != null_var); // constraints without unassigned variables would be evaluated at this point
if (c.is_negative() && c->is_eq() && c->to_eq().is_unilinear()) {
pdd const& p = c->to_eq();
if (p.hi().is_one()) {
eq = lit;
k = (-p.lo()).val();
}
}
}
if (eq == sat::null_literal)
return false;
LOG("Found bailout literal: " << lit_pp(s, eq));
// Keep all premise literals and the equation
unsigned j = 0;
for (unsigned i = 0; i < cl.size(); ++i) {
sat::literal const lit = cl[i];
lbool const status = s.m_bvars.value(lit);
if (status == l_false || lit == eq)
cl[j++] = cl[i];
else {
DEBUG_CODE({
auto a = s.get_assignment().clone();
a.push(v, k);
SASSERT(s.lit2cnstr(lit).is_currently_false(a));
});
}
}
if (j == cl.size())
return false;
cl.m_literals.shrink(j);
return true;
}
/**
* Abstract body of the polynomial (i.e., the variable terms without constant term)
* by a single variable.
*
* abstract(2*x*y + x + 7)
* -> v = 2*x*y + x
* r = x + 7
*
* \return Abstracted polynomial
* \param[out] v Body
*/
pdd simplify_clause::abstract(pdd const& p, pdd& v) {
if (p.is_val()) {
SASSERT(v.is_zero());
return p;
}
if (p.is_unilinear()) {
// we need an interval with coeff == 1 to be able to compare intervals easily
auto const& coeff = p.hi().val();
if (coeff.is_one() || coeff == p.manager().max_value()) {
v = p.manager().mk_var(p.var());
return p;
}
}
unsigned max_var = p.var();
auto& m = p.manager();
pdd r(m);
v = p - p.offset();
r = p - v;
auto const& lc = p.leading_coefficient();
if (mod(-lc, m.two_to_N()) < lc) {
v = -v;
r -= m.mk_var(max_var);
}
else
r += m.mk_var(max_var);
return r;
}
void simplify_clause::prepare_subs_entry(subs_entry& entry, signed_constraint c) {
entry.valid = false;
if (!c->is_ule())
return;
forbidden_intervals fi(s);
auto const& ule = c->to_ule();
auto& m = ule.lhs().manager();
signed_constraint sc = c;
pdd v_lhs(m), v_rhs(m);
pdd lhs = abstract(ule.lhs(), v_lhs);
pdd rhs = abstract(ule.rhs(), v_rhs);
if (lhs.is_val() && rhs.is_val())
return;
if (!lhs.is_val() && !rhs.is_val() && v_lhs != v_rhs)
return;
if (lhs != ule.lhs() || rhs != ule.rhs()) {
sc = s.ule(lhs, rhs);
if (c.is_negative())
sc.negate();
}
pvar v = rhs.is_val() ? lhs.var() : rhs.var();
VERIFY(fi.get_interval(sc, v, entry));
if (entry.coeff != 1)
return;
entry.var = lhs.is_val() ? v_rhs : v_lhs;
entry.subsuming = false;
entry.valid = true;
}
/**
* Test simple subsumption between inequalities over equal polynomials (up to the constant term),
* i.e., subsumption between literals of the form:
*
* p + n_1 <= n_2
* n_3 <= p + n_4
* p + n_5 <= p + n_6
*
* (p polynomial, n_i constant numbers)
*
* A literal C subsumes literal D (i.e, C ==> D),
* if the forbidden interval of C is a superset of the forbidden interval of D.
* fi(D) subset fi(C) ==> C subsumes D
* If C subsumes D, remove C from the lemma.
*/
bool simplify_clause::try_equal_body_subsumptions(clause& cl) {
LOG_H2("Equal-body-subsumption for: " << cl);
m_entries.reserve(cl.size());
for (unsigned i = 0; i < cl.size(); ++i) {
subs_entry& entry = m_entries[i];
sat::literal lit = cl[i];
LOG_V(10, "Literal " << lit_pp(s, lit));
signed_constraint c = s.lit2cnstr(lit);
prepare_subs_entry(entry, c);
}
// Check subsumption between intervals for the same variable
bool any_subsumed = false;
for (unsigned i = 0; i < cl.size(); ++i) {
subs_entry& e = m_entries[i];
if (e.subsuming || !e.valid)
continue;
for (unsigned j = 0; j < cl.size(); ++j) {
subs_entry& f = m_entries[j];
if (f.subsuming || !f.valid || i == j || *e.var != *f.var)
continue;
if (e.interval.currently_contains(f.interval)) {
// f subset of e ==> f.src subsumed by e.src
LOG("Removing " << cl[i] << ": " << s.lit2cnstr(cl[i]) << " because it subsumes " << cl[j] << ": " << s.lit2cnstr(cl[j]));
e.subsuming = true;
any_subsumed = true;
break;
}
}
}
// Remove subsuming literals
if (!any_subsumed)
return false;
unsigned j = 0;
for (unsigned i = 0; i < cl.size(); ++i)
if (!m_entries[i].valid || !m_entries[i].subsuming)
cl[j++] = cl[i];
cl.m_literals.shrink(j);
return true;
}
// decomposes into a plain constant and a part containing variables. e.g., 2*x*y + 3*z - 2 becomes { 2*x*y + 3*z, -2 }
static std::pair<pdd, pdd> decouple_constant(pdd const& p) {
auto& m = p.manager();
rational offset = p.offset();
return { p - offset, m.mk_val(offset) };
}
// 2^(k - d) * x = m * 2^(k - d)
// Special case [still seems to occur frequently]: -2^(k - 2) * x > 2^(k - 1) - TODO: Generalize [the obvious solution does not work] => lsb(x, 2) = 1
bool simplify_clause::get_lsb(pdd lhs, pdd rhs, pdd& p, trailing_bits& info, bool pos) {
SASSERT(lhs.is_univariate() && lhs.degree() <= 1);
SASSERT(rhs.is_univariate() && rhs.degree() <= 1);
if (rhs.is_zero()) { // equality
auto lhs_decomp = decouple_constant(lhs);
lhs = lhs_decomp.first;
rhs = -lhs_decomp.second;
SASSERT(rhs.is_val());
unsigned k = lhs.manager().power_of_2();
unsigned d = lhs.max_pow2_divisor();
unsigned span = k - d;
if (span == 0 || lhs.is_val())
return false;
p = lhs.div(rational::power_of_two(d));
rational rhs_val = rhs.val();
info.bits = rhs_val / rational::power_of_two(d);
if (!info.bits.is_int())
return false;
SASSERT(lhs.is_univariate() && lhs.degree() <= 1);
auto it = p.begin();
auto first = *it;
it++;
if (it == p.end()) {
// if the lhs contains only one monomial it is of the form: odd * x = mask. We can multiply by the inverse to get the mask for x
SASSERT(first.coeff.is_odd());
rational inv;
VERIFY(first.coeff.mult_inverse(lhs.power_of_2(), inv));
p *= inv;
info.bits = mod2k(info.bits * inv, span);
}
info.length = span;
info.positive = pos;
return true;
}
else { // inequality - check for special case
if (pos || lhs.power_of_2() < 3)
return false;
auto it = lhs.begin();
if (it == lhs.end())
return false;
if (it->vars.size() != 1)
return false;
rational coeff = it->coeff;
it++;
if (it != lhs.end())
return false;
if ((mod2k(-coeff, lhs.power_of_2())) != rational::power_of_two(lhs.power_of_2() - 2))
return false;
p = lhs.div(coeff);
SASSERT(p.is_var());
info.bits = 1;
info.length = 2;
info.positive = true; // this is a conjunction
return true;
}
}
// 2^k - 2^(k - i) <= x -> first i bits 1
// 2^(k - i) > x -> first i bits 0
bool simplify_clause::get_msb(pdd lhs, pdd rhs, pdd& p, leading_bits& info, bool pos) {
SASSERT(lhs.is_univariate() && lhs.degree() <= 1);
SASSERT(rhs.is_univariate() && rhs.degree() <= 1);
if (lhs.is_var() && rhs.is_val()) {
if (rhs.is_zero())
return false;
// rewrite into expected form
pdd t = lhs;
lhs = rhs;
rhs = t - 1;
pos = !pos;
}
if (!rhs.is_var() || !lhs.is_val())
return false;
p = rhs;
rational v = lhs.val();
if (pos)
v = rational::power_of_two(lhs.power_of_2()) - v;
SASSERT(!v.is_neg());
info.positive = pos;
if (v.is_zero())
return false;
if (v.is_one()) {
if (pos)
return false;
info.length = lhs.power_of_2();
return true; // p = 0
}
unsigned d = (v - 1).get_num_bits(); // ceil(log2(lhs))
info.length = lhs.power_of_2() - d;
if (info.length == 0)
return false;
return true;
}
// 2^(k - 1) <= 2^(k - i - 1) * x (original definition)
// 2^(k - i - 1) * x + 2^(k - 1) <= 2^(k - 1) - 1 (rewritten)
bool simplify_clause::get_bit(const pdd& lhs, const pdd& rhs, pdd& p, single_bit& bit, bool pos) {
SASSERT(lhs.is_univariate() && lhs.degree() <= 1);
SASSERT(rhs.is_univariate() && rhs.degree() <= 1);
unsigned k = rhs.power_of_2();
if (rhs.is_val()) {
// 2^(k - i - 1) * x + 2^(k - 1) <= 2^(k - 1) - 1
rational rhs_val = rhs.val() + 1;
if (rhs_val != rational::power_of_two(k - 1))
return false;
pdd rest = lhs - rhs_val;
if (rest.is_val()) // e.g., lhs=2^255; rhs=2^255-1
return false;
SASSERT(lhs.is_univariate() && lhs.degree() <= 1);
unsigned d = rest.max_pow2_divisor();
bit.position = k - d - 1;
bit.positive = pos;
p = rest.div(rational::power_of_two(d));
return p.is_var();
}
else {
// 2^(k - 1) <= 2^(k - i - 1) * x
unsigned pow;
if (!lhs.is_val() || !lhs.val().is_power_of_two(pow) || pow != k - 1)
return false;
unsigned d = rhs.max_pow2_divisor();
bit.position = k - d - 1;
bit.positive = pos;
p = rhs.div(rational::power_of_two(d));
return p.is_var();
}
}
// Compares with respect to "subsumption"
// -1: mask1 < mask2 (e.g., 101 < 0101)
// 0: incomparable
// 1: mask1 > mask2
// failure mask1 == mask2
static int compare(const trailing_bits& mask1, const trailing_bits& mask2) {
if (mask1.length == mask2.length) {
SASSERT(mask1.bits != mask2.bits); // otw. we would have already eliminated the duplicate constraint
return 0;
}
if (mask1.length < mask2.length) {
for (unsigned i = 0; i < mask1.length; i++)
if (mask1.bits.get_bit(i) != mask2.bits.get_bit(i))
return 0;
return -1;
}
SASSERT(mask1.length > mask2.length);
for (unsigned i = 0; i < mask2.length; i++)
if (mask1.bits.get_bit(i) != mask2.bits.get_bit(i))
return 0;
return 1;
}
/**
* Test simple subsumption between bit and parity constraints.
*
* let lsb(t, d) = m := 2^(k - d)*t = m * 2^(k - d) denotes that the last (least significant) d bits of t are the binary representation of m
* let bit(t, i) := 2^(k - 1) <= 2^(k - i - 1)*t
* TODO: t == val || bit(t, i) resp. !bit(t, i) resp. lsb(t, d) = m with matching values removes the equality
*
* lsb(t, d) = m with log2(m) >= d => false
*
* parity(t) >= d denotes lsb(t, d) = 0
* parity(t) <= d denotes lsb(t, d + 1) != 0
*
* parity(t) >= d1 || parity(t) >= d2 with d1 < d2 implies parity(t) >= d1
* parity(t) <= d1 || parity(t) <= d2 with d1 < d2 implies parity(t) <= d2
*
* parity(t) >= d1 || !bit(t, d2) with d2 < d1 implies bit(t, d2)
* parity(t) <= d1 || bit(t, d2) with d2 < d1 implies parity(t) <= d1
*
* parity(t) >= d1 || parity(t) <= d2 with d1 <= d2 implies true
*
* More generally: parity can be replaced by lsb in case we check for subsumption between the bit-masks rather than comparing the parities (special case)
*/
bool simplify_clause::try_bit_subsumptions(clause& cl) {
LOG_H2("Try bit subsumptions: " << cl);
struct pdd_info {
unsigned sz;
vector<trailing_bits> leading;
vector<single_bit> fixed_bits;
};
struct optional_pdd_hash {
unsigned operator()(optional<pdd> const& args) const {
return args->hash();
}
};
if (!s.inc())
return false;
ptr_vector<pdd_info> info_list;
map<optional<pdd>, pdd_info*, optional_pdd_hash, default_eq<optional<pdd>>> info_table;
bool is_valid = false;
auto get_info = [&info_table, &info_list](const pdd& p) -> pdd_info& {
auto it = info_table.find_iterator(optional(p));
if (it != info_table.end())
return *it->m_value;
auto* info = alloc(pdd_info);
info->sz = p.manager().power_of_2();
info_list.push_back(info);
info_table.insert(optional(p), info);
return *info;
};
bool changed = false;
bool_vector removed(cl.size(), false);
for (unsigned i = 0; i < cl.size(); i++) {
signed_constraint c = s.lit2cnstr(cl[i]);
if (!c->is_ule())
continue;
trailing_bits mask;
single_bit bit;
pdd p = c->to_ule().lhs();
if (c->is_eq() && get_lsb(c->to_ule().lhs(), c->to_ule().rhs(), p, mask, c.is_positive())) {
if (mask.bits.bitsize() > mask.length) {
removed[i] = true; // skip this constraint. e.g., 2^(k-3)*x = 9*2^(k-3) is false as 9 >= 2^3
continue;
}
mask.src_idx = i;
get_info(p).leading.push_back(mask);
}
else if (c->is_ule() && get_bit(c->to_ule().lhs(), c->to_ule().rhs(), p, bit, c.is_positive())) {
bit.src_idx = i;
get_info(p).fixed_bits.push_back(bit);
}
}
for (const auto& entry : info_list) {
for (unsigned i = 0; i < entry->leading.size(); i++) {
auto& p1 = entry->leading[i];
// trailing vs. positive
for (unsigned j = i + 1; !removed[p1.src_idx] && j < entry->leading.size(); j++) {
auto& p2 = entry->leading[j];
if (!removed[p2.src_idx])
continue;
if (p1.positive == p2.positive) {
int cmp = compare(p1, p2);
if (cmp != 0) {
if ((cmp == -1) == p1.positive) {
LOG("Removed: " << s.lit2cnstr(cl[p2.src_idx]) << " because of " << s.lit2cnstr(cl[p1.src_idx]) << "\n");
removed[p2.src_idx] = true;
changed = true;
}
else if ((cmp == 1) == p1.positive) {
LOG("Removed: " << s.lit2cnstr(cl[p1.src_idx]) << " because of " << s.lit2cnstr(cl[p2.src_idx]) << "\n");
removed[p1.src_idx] = true;
changed = true;
}
}
}
else {
auto& pos = p1.positive ? p1 : p2;
auto& neg = p1.positive ? p2 : p1;
int cmp = compare(pos, neg);
if (cmp == -1) {
is_valid = true;
changed = true;
LOG("Tautology: " << s.lit2cnstr(cl[pos.src_idx]) << " and " << s.lit2cnstr(cl[neg.src_idx]) << "\n");
goto done;
}
}
}
// trailing vs. bit
for (unsigned j = 0; !removed[p1.src_idx] && j < entry->fixed_bits.size(); j++) {
auto& p2 = entry->fixed_bits[j];
if (removed[p2.src_idx])
continue;
if (p2.position >= p1.length)
continue;
if (p1.positive) {
if (p1.bits.get_bit(p2.position) == p2.positive) {
LOG("Removed: " << s.lit2cnstr(cl[p1.src_idx]) << " because of " << s.lit2cnstr(cl[p2.src_idx]) << " (bit)\n");
removed[p1.src_idx] = true;
changed = true;
}
}
else {
if (p1.bits.get_bit(p2.position) != p2.positive) {
LOG("Removed: " << s.lit2cnstr(cl[p2.src_idx]) << " (bit) because of " << s.lit2cnstr(cl[p1.src_idx]) << "\n");
removed[p2.src_idx] = true;
changed = true;
}
}
}
}
}
done:
for (auto entry : info_list)
dealloc(entry);
if (is_valid) {
SASSERT(!cl.empty());
cl.literals().clear();
cl.literals().push_back(s.eq(s.value(rational::zero(), 1)).blit()); // an obvious tautology
return true;
}
// Remove subsuming literals
if (!changed)
return false;
verbose_stream() << "Bit simplified\n";
unsigned cli = 0;
for (unsigned i = 0; i < cl.size(); ++i)
if (!removed[i])
cl[cli++] = cl[i];
cl.m_literals.shrink(cli);
return true;
}
#if 0
// All variables of clause 'cl' except 'z' are assigned.
// Goal: a possibly weaker clause that implies a restriction on z around z_val
clause_ref simplify_clause::make_asserting(clause& cl, pvar z, rational z_val) {
signed_constraints cz; // constraints of 'cl' that contain 'z'
sat::literal_vector lits; // literals of the new clause
for (sat::literal lit : cl) {
signed_constraint c = s.lit2cnstr(lit);
if (c.contains_var(z))
cz.push_back(c);
else
lits.push_back(lit);
}
SASSERT(!cz.empty());
if (cz.size() == 1) {
// TODO: even in this case, if the constraint is non-linear in z, we might want to extract a maximal forbidden interval around z_val.
return nullptr;
}
else {
// multiple constraints that contain z
find_implied_constraint(cz, z, z_val, lits);
return clause::from_literals(std::move(lits));
}
}
// Each constraint in 'cz' is univariate in 'z' under the current assignment.
// Goal: a literal that is implied by the disjunction of cz and ensures z != z_val in viable.
// (plus side conditions that do not depend on z)
void simplify_clause::find_implied_constraint(signed_constraints const& cz, pvar z, rational z_val, sat::literal_vector& out_lits)
{
unsigned const out_lits_original_size = out_lits.size();
forbidden_intervals fi(s);
fi_record entry;
auto intersection = eval_interval::full();
bool all_unit = true;
for (signed_constraint const& c : cz) {
if (fi.get_interval(c, z, entry) && entry.coeff == 1) {
intersection = intersection.intersect(entry.interval);
for (auto const& sc : entry.side_cond)
out_lits.push_back(sc.blit());
} else {
all_unit = false;
break;
}
}
if (all_unit) {
SASSERT(!intersection.is_currently_empty());
// Unit intervals from all constraints
// => build constraint from intersection of forbidden intervals
// z \not\in [l;u[ <=> z - l >= u - l
if (intersection.is_proper()) {
auto c_new = s.ule(intersection.hi() - intersection.lo(), z - intersection.lo());
out_lits.push_back(c_new.blit());
}
} else {
out_lits.shrink(out_lits_original_size);
find_implied_constraint_sat(cz, z, z_val, out_lits);
}
}
void simplify_clause::find_implied_constraint_sat(signed_constraints const& cz, pvar z, rational z_val, sat::literal_vector& out_lits)
{
unsigned bit_width = s.size(z);
auto p_factory = mk_univariate_bitblast_factory();
auto p_us = (*p_factory)(bit_width);
auto& us = *p_us;
// Find max z1 such that z1 < z_val and all cz true under z := z1 (and current assignment)
rational z1 = z_val;
for (signed_constraint const& c : cz)
c.add_to_univariate_solver(s, us, 0);
us.add_ult_const(z_val, false, 0); // z1 < z_val
// First check if any such z1 exists
switch (us.check()) {
case l_false:
// No such z1 exists
z1 = s.m_pdd[z]->max_value(); // -1
break;
case l_true:
// z1 exists. Try to make it as small as possible by setting bits to 0
for (unsigned j = bit_width; j-- > 0; ) {
switch (us.check()) {
case l_true:
// TODO
break;
case l_false:
// TODO
break;
default:
UNREACHABLE(); // TODO: see below
}
}
break;
default:
UNREACHABLE(); // TODO: should we link the child solver's resources to polysat's resource counter?
}
// Find min z2 such that z2 > z_val and all cz true under z := z2 (and current assignment)
// TODO
}
#endif
}