mirror of
https://github.com/Z3Prover/z3
synced 2025-04-09 02:41:52 +00:00
537 lines
16 KiB
C++
537 lines
16 KiB
C++
/*++
|
|
Copyright (c) 2012 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
qe_lite.cpp
|
|
|
|
Abstract:
|
|
|
|
Light weight partial quantifier-elimination procedure
|
|
|
|
Author:
|
|
|
|
Nikolaj Bjorner (nbjorner) 2012-10-17
|
|
|
|
Revision History:
|
|
|
|
- TBD: integrate Fourier Motzkin elimination
|
|
integrate Gaussean elimination
|
|
|
|
--*/
|
|
#include "qe_lite.h"
|
|
#include "expr_abstract.h"
|
|
#include "used_vars.h"
|
|
#include"occurs.h"
|
|
#include"for_each_expr.h"
|
|
#include"rewriter_def.h"
|
|
#include"ast_pp.h"
|
|
#include"ast_ll_pp.h"
|
|
#include"ast_smt2_pp.h"
|
|
#include"tactical.h"
|
|
#include"bool_rewriter.h"
|
|
#include"var_subst.h"
|
|
|
|
class der2 {
|
|
ast_manager & m;
|
|
var_subst m_subst;
|
|
expr_ref_buffer m_new_exprs;
|
|
|
|
ptr_vector<expr> m_map;
|
|
int_vector m_pos2var;
|
|
ptr_vector<var> m_inx2var;
|
|
unsigned_vector m_order;
|
|
expr_ref_vector m_subst_map;
|
|
expr_ref_buffer m_new_args;
|
|
|
|
/**
|
|
\brief Return true if e can be viewed as a variable disequality.
|
|
Store the variable id in v and the definition in t.
|
|
For example:
|
|
|
|
if e is (not (= (VAR 1) T)), then v assigned to 1, and t to T.
|
|
if e is (iff (VAR 2) T), then v is assigned to 2, and t to (not T).
|
|
(not T) is used because this formula is equivalent to (not (iff (VAR 2) (not T))),
|
|
and can be viewed as a disequality.
|
|
*/
|
|
bool is_var_diseq(expr * e, unsigned num_decls, var *& v, expr_ref & t);
|
|
|
|
/**
|
|
\brief Return true if e can be viewed as a variable equality.
|
|
*/
|
|
bool is_var_eq(expr * e, unsigned num_decls, var *& v, expr_ref & t);
|
|
|
|
bool is_var_def(bool check_eq, expr* e, unsigned num_decls, var*& v, expr_ref& t);
|
|
|
|
void get_elimination_order();
|
|
void create_substitution(unsigned sz);
|
|
void apply_substitution(quantifier * q, expr_ref & r);
|
|
void reduce_quantifier1(quantifier * q, expr_ref & r, proof_ref & pr);
|
|
void elim_unused_vars(expr_ref& r, proof_ref &pr);
|
|
|
|
public:
|
|
der2(ast_manager & m):m(m),m_subst(m),m_new_exprs(m),m_subst_map(m),m_new_args(m) {}
|
|
void operator()(quantifier * q, expr_ref & r, proof_ref & pr);
|
|
void reduce_quantifier(quantifier * q, expr_ref & r, proof_ref & pr);
|
|
ast_manager& get_manager() const { return m; }
|
|
};
|
|
|
|
static bool is_var(expr * e, unsigned num_decls) {
|
|
return is_var(e) && to_var(e)->get_idx() < num_decls;
|
|
}
|
|
|
|
static bool is_neg_var(ast_manager & m, expr * e, unsigned num_decls) {
|
|
expr* e1;
|
|
return m.is_not(e, e1) && is_var(e1, num_decls);
|
|
}
|
|
|
|
bool der2::is_var_def(bool check_eq, expr* e, unsigned num_decls, var*& v, expr_ref& t) {
|
|
if (check_eq) {
|
|
return is_var_eq(e, num_decls, v, t);
|
|
}
|
|
else {
|
|
return is_var_diseq(e, num_decls, v, t);
|
|
}
|
|
}
|
|
|
|
bool der2::is_var_eq(expr * e, unsigned num_decls, var * & v, expr_ref & t) {
|
|
expr* lhs, *rhs;
|
|
|
|
// (= VAR t), (iff VAR t), (iff (not VAR) t), (iff t (not VAR)) cases
|
|
if (m.is_eq(e, lhs, rhs) || m.is_iff(e, lhs, rhs)) {
|
|
// (iff (not VAR) t) (iff t (not VAR)) cases
|
|
if (!is_var(lhs, num_decls) && !is_var(rhs, num_decls) && m.is_bool(lhs)) {
|
|
if (!is_neg_var(m, lhs, num_decls)) {
|
|
std::swap(lhs, rhs);
|
|
}
|
|
if (!is_neg_var(m, lhs, num_decls)) {
|
|
return false;
|
|
}
|
|
v = to_var(lhs);
|
|
t = m.mk_not(rhs);
|
|
m_new_exprs.push_back(t);
|
|
TRACE("der", tout << mk_pp(e, m) << "\n";);
|
|
return true;
|
|
}
|
|
if (!is_var(lhs, num_decls))
|
|
std::swap(lhs, rhs);
|
|
if (!is_var(lhs, num_decls))
|
|
return false;
|
|
v = to_var(lhs);
|
|
t = rhs;
|
|
TRACE("der", tout << mk_pp(e, m) << "\n";);
|
|
return true;
|
|
}
|
|
|
|
// (ite cond (= VAR t) (= VAR t2)) case
|
|
expr* cond, *e2, *e3;
|
|
if (m.is_ite(e, cond, e2, e3)) {
|
|
if (is_var_eq(e2, num_decls, v, t)) {
|
|
expr_ref t2(m);
|
|
var* v2;
|
|
if (is_var_eq(e3, num_decls, v2, t2) && v2 == v) {
|
|
t = m.mk_ite(cond, t, t2);
|
|
m_new_exprs.push_back(t);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// VAR = true case
|
|
if (is_var(e, num_decls)) {
|
|
t = m.mk_true();
|
|
v = to_var(e);
|
|
TRACE("der", tout << mk_pp(e, m) << "\n";);
|
|
return true;
|
|
}
|
|
|
|
// VAR = false case
|
|
if (is_neg_var(m, e, num_decls)) {
|
|
t = m.mk_false();
|
|
v = to_var(to_app(e)->get_arg(0));
|
|
TRACE("der", tout << mk_pp(e, m) << "\n";);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
\brief Return true if \c e is of the form (not (= VAR t)) or (not (iff VAR t)) or
|
|
(iff VAR t) or (iff (not VAR) t) or (VAR IDX) or (not (VAR IDX)).
|
|
The last case can be viewed
|
|
*/
|
|
bool der2::is_var_diseq(expr * e, unsigned num_decls, var * & v, expr_ref & t) {
|
|
expr* e1;
|
|
if (m.is_not(e, e1)) {
|
|
return is_var_eq(e, num_decls, v, t);
|
|
}
|
|
else if (is_var_eq(e, num_decls, v, t) && m.is_bool(v)) {
|
|
bool_rewriter(m).mk_not(t, t);
|
|
m_new_exprs.push_back(t);
|
|
return true;
|
|
}
|
|
else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void der2::elim_unused_vars(expr_ref& r, proof_ref& pr) {
|
|
if (is_quantifier(r)) {
|
|
quantifier * q = to_quantifier(r);
|
|
::elim_unused_vars(m, q, r);
|
|
if (m.proofs_enabled()) {
|
|
proof * p1 = m.mk_elim_unused_vars(q, r);
|
|
pr = m.mk_transitivity(pr, p1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
Reduce the set of definitions in quantifier.
|
|
Then eliminate variables that have become unused
|
|
*/
|
|
void der2::operator()(quantifier * q, expr_ref & r, proof_ref & pr) {
|
|
TRACE("der", tout << mk_pp(q, m) << "\n";);
|
|
pr = 0;
|
|
r = q;
|
|
reduce_quantifier(q, r, pr);
|
|
if (r != q) {
|
|
elim_unused_vars(r, pr);
|
|
}
|
|
}
|
|
|
|
void der2::reduce_quantifier(quantifier * q, expr_ref & r, proof_ref & pr) {
|
|
r = q;
|
|
// Keep applying reduce_quantifier1 until r doesn't change anymore
|
|
do {
|
|
proof_ref curr_pr(m);
|
|
q = to_quantifier(r);
|
|
reduce_quantifier1(q, r, curr_pr);
|
|
if (m.proofs_enabled()) {
|
|
pr = m.mk_transitivity(pr, curr_pr);
|
|
}
|
|
} while (q != r && is_quantifier(r));
|
|
|
|
m_new_exprs.reset();
|
|
}
|
|
|
|
void der2::reduce_quantifier1(quantifier * q, expr_ref & r, proof_ref & pr) {
|
|
expr * e = q->get_expr();
|
|
unsigned num_decls = q->get_num_decls();
|
|
var * v = 0;
|
|
expr_ref t(m);
|
|
unsigned num_args = 1;
|
|
expr* const* args = &e;
|
|
if ((q->is_forall() && m.is_or(e)) ||
|
|
(q->is_exists() && m.is_and(e))) {
|
|
num_args = to_app(e)->get_num_args();
|
|
args = to_app(e)->get_args();
|
|
}
|
|
|
|
unsigned def_count = 0;
|
|
unsigned largest_vinx = 0;
|
|
|
|
m_map.reset();
|
|
m_pos2var.reset();
|
|
m_inx2var.reset();
|
|
m_pos2var.reserve(num_args, -1);
|
|
|
|
// Find all definitions
|
|
for (unsigned i = 0; i < num_args; i++) {
|
|
if (is_var_def(q->is_exists(), args[i], num_decls, v, t)) {
|
|
unsigned idx = v->get_idx();
|
|
if(m_map.get(idx, 0) == 0) {
|
|
m_map.reserve(idx + 1, 0);
|
|
m_inx2var.reserve(idx + 1, 0);
|
|
m_map[idx] = t;
|
|
m_inx2var[idx] = v;
|
|
m_pos2var[i] = idx;
|
|
def_count++;
|
|
largest_vinx = std::max(idx, largest_vinx);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (def_count > 0) {
|
|
get_elimination_order();
|
|
SASSERT(m_order.size() <= def_count); // some might be missing because of cycles
|
|
|
|
if (!m_order.empty()) {
|
|
create_substitution(largest_vinx + 1);
|
|
apply_substitution(q, r);
|
|
}
|
|
else {
|
|
r = q;
|
|
}
|
|
}
|
|
else {
|
|
TRACE("der_bug", tout << "Did not find any diseq\n" << mk_pp(q, m) << "\n";);
|
|
r = q;
|
|
}
|
|
|
|
if (m.proofs_enabled()) {
|
|
pr = r == q ? 0 : m.mk_der(q, r);
|
|
}
|
|
}
|
|
|
|
static void der_sort_vars(ptr_vector<var> & vars, ptr_vector<expr> & definitions, unsigned_vector & order) {
|
|
order.reset();
|
|
|
|
// eliminate self loops, and definitions containing quantifiers.
|
|
bool found = false;
|
|
for (unsigned i = 0; i < definitions.size(); i++) {
|
|
var * v = vars[i];
|
|
expr * t = definitions[i];
|
|
if (t == 0 || has_quantifiers(t) || occurs(v, t))
|
|
definitions[i] = 0;
|
|
else
|
|
found = true; // found at least one candidate
|
|
}
|
|
|
|
if (!found)
|
|
return;
|
|
|
|
typedef std::pair<expr *, unsigned> frame;
|
|
svector<frame> todo;
|
|
|
|
expr_fast_mark1 visiting;
|
|
expr_fast_mark2 done;
|
|
|
|
unsigned vidx, num;
|
|
|
|
for (unsigned i = 0; i < definitions.size(); i++) {
|
|
if (definitions[i] == 0)
|
|
continue;
|
|
var * v = vars[i];
|
|
SASSERT(v->get_idx() == i);
|
|
SASSERT(todo.empty());
|
|
todo.push_back(frame(v, 0));
|
|
while (!todo.empty()) {
|
|
start:
|
|
frame & fr = todo.back();
|
|
expr * t = fr.first;
|
|
if (t->get_ref_count() > 1 && done.is_marked(t)) {
|
|
todo.pop_back();
|
|
continue;
|
|
}
|
|
switch (t->get_kind()) {
|
|
case AST_VAR:
|
|
vidx = to_var(t)->get_idx();
|
|
if (fr.second == 0) {
|
|
CTRACE("der_bug", vidx >= definitions.size(), tout << "vidx: " << vidx << "\n";);
|
|
// Remark: The size of definitions may be smaller than the number of variables occuring in the quantified formula.
|
|
if (definitions.get(vidx, 0) != 0) {
|
|
if (visiting.is_marked(t)) {
|
|
// cycle detected: remove t
|
|
visiting.reset_mark(t);
|
|
definitions[vidx] = 0;
|
|
}
|
|
else {
|
|
visiting.mark(t);
|
|
fr.second = 1;
|
|
todo.push_back(frame(definitions[vidx], 0));
|
|
goto start;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
SASSERT(fr.second == 1);
|
|
if (definitions.get(vidx, 0) != 0) {
|
|
visiting.reset_mark(t);
|
|
order.push_back(vidx);
|
|
}
|
|
else {
|
|
// var was removed from the list of candidate vars to elim cycle
|
|
// do nothing
|
|
}
|
|
}
|
|
if (t->get_ref_count() > 1)
|
|
done.mark(t);
|
|
todo.pop_back();
|
|
break;
|
|
case AST_QUANTIFIER:
|
|
UNREACHABLE();
|
|
todo.pop_back();
|
|
break;
|
|
case AST_APP:
|
|
num = to_app(t)->get_num_args();
|
|
while (fr.second < num) {
|
|
expr * arg = to_app(t)->get_arg(fr.second);
|
|
fr.second++;
|
|
if (arg->get_ref_count() > 1 && done.is_marked(arg))
|
|
continue;
|
|
todo.push_back(frame(arg, 0));
|
|
goto start;
|
|
}
|
|
if (t->get_ref_count() > 1)
|
|
done.mark(t);
|
|
todo.pop_back();
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
todo.pop_back();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void der2::get_elimination_order() {
|
|
m_order.reset();
|
|
|
|
TRACE("top_sort",
|
|
tout << "DEFINITIONS: " << std::endl;
|
|
for(unsigned i = 0; i < m_map.size(); i++)
|
|
if(m_map[i]) tout << "VAR " << i << " = " << mk_pp(m_map[i], m) << std::endl;
|
|
);
|
|
|
|
// der2::top_sort ts(m);
|
|
der_sort_vars(m_inx2var, m_map, m_order);
|
|
|
|
TRACE("der",
|
|
tout << "Elimination m_order:" << std::endl;
|
|
for(unsigned i=0; i<m_order.size(); i++)
|
|
{
|
|
if (i != 0) tout << ",";
|
|
tout << m_order[i];
|
|
}
|
|
tout << std::endl;
|
|
);
|
|
}
|
|
|
|
void der2::create_substitution(unsigned sz) {
|
|
m_subst_map.reset();
|
|
m_subst_map.resize(sz, 0);
|
|
|
|
for(unsigned i = 0; i < m_order.size(); i++) {
|
|
expr_ref cur(m_map[m_order[i]], m);
|
|
|
|
// do all the previous substitutions before inserting
|
|
expr_ref r(m);
|
|
m_subst(cur, m_subst_map.size(), m_subst_map.c_ptr(), r);
|
|
|
|
unsigned inx = sz - m_order[i]- 1;
|
|
SASSERT(m_subst_map[inx]==0);
|
|
m_subst_map[inx] = r;
|
|
}
|
|
}
|
|
|
|
void der2::apply_substitution(quantifier * q, expr_ref & r) {
|
|
expr * e = q->get_expr();
|
|
unsigned num_args=to_app(e)->get_num_args();
|
|
bool_rewriter rw(m);
|
|
|
|
// get a new expression
|
|
m_new_args.reset();
|
|
for(unsigned i = 0; i < num_args; i++) {
|
|
int x = m_pos2var[i];
|
|
if (x != -1 && m_map[x] != 0)
|
|
continue; // this is a disequality with definition (vanishes)
|
|
|
|
m_new_args.push_back(to_app(e)->get_arg(i));
|
|
}
|
|
|
|
expr_ref t(m);
|
|
if (q->is_forall()) {
|
|
rw.mk_or(m_new_args.size(), m_new_args.c_ptr(), t);
|
|
}
|
|
else {
|
|
rw.mk_and(m_new_args.size(), m_new_args.c_ptr(), t);
|
|
}
|
|
expr_ref new_e(m);
|
|
m_subst(t, m_subst_map.size(), m_subst_map.c_ptr(), new_e);
|
|
|
|
// don't forget to update the quantifier patterns
|
|
expr_ref_buffer new_patterns(m);
|
|
expr_ref_buffer new_no_patterns(m);
|
|
for (unsigned j = 0; j < q->get_num_patterns(); j++) {
|
|
expr_ref new_pat(m);
|
|
m_subst(q->get_pattern(j), m_subst_map.size(), m_subst_map.c_ptr(), new_pat);
|
|
new_patterns.push_back(new_pat);
|
|
}
|
|
|
|
for (unsigned j = 0; j < q->get_num_no_patterns(); j++) {
|
|
expr_ref new_nopat(m);
|
|
m_subst(q->get_no_pattern(j), m_subst_map.size(), m_subst_map.c_ptr(), new_nopat);
|
|
new_no_patterns.push_back(new_nopat);
|
|
}
|
|
|
|
r = m.update_quantifier(q, new_patterns.size(), new_patterns.c_ptr(),
|
|
new_no_patterns.size(), new_no_patterns.c_ptr(), new_e);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class qe_lite::impl {
|
|
ast_manager& m;
|
|
der2 m_der;
|
|
|
|
public:
|
|
impl(ast_manager& m): m(m), m_der(m) {}
|
|
|
|
void operator()(app_ref_vector& vars, expr_ref& fml) {
|
|
expr_ref tmp(fml);
|
|
quantifier_ref q(m);
|
|
proof_ref pr(m);
|
|
symbol qe_lite("QE");
|
|
expr_abstract(m, 0, vars.size(), (expr*const*)vars.c_ptr(), fml, tmp);
|
|
ptr_vector<sort> sorts;
|
|
svector<symbol> names;
|
|
for (unsigned i = 0; i < vars.size(); ++i) {
|
|
sorts.push_back(m.get_sort(vars[i].get()));
|
|
names.push_back(vars[i]->get_decl()->get_name());
|
|
}
|
|
q = m.mk_exists(vars.size(), sorts.c_ptr(), names.c_ptr(), tmp, 1, qe_lite);
|
|
m_der.reduce_quantifier(q, tmp, pr);
|
|
// assumes m_der just updates the quantifier and does not change things more.
|
|
if (is_exists(tmp) && to_quantifier(tmp)->get_qid() == qe_lite) {
|
|
used_vars used;
|
|
tmp = to_quantifier(tmp)->get_expr();
|
|
used.process(tmp);
|
|
var_subst vs(m, true);
|
|
vs(tmp, vars.size(), (expr*const*)vars.c_ptr(), fml);
|
|
// collect set of variables that were used.
|
|
unsigned j = 0;
|
|
for (unsigned i = 0; i < vars.size(); ++i) {
|
|
if (used.contains(vars.size()-i-1)) {
|
|
vars[j] = vars[i];
|
|
++j;
|
|
}
|
|
}
|
|
vars.resize(j);
|
|
}
|
|
else {
|
|
fml = tmp;
|
|
}
|
|
}
|
|
|
|
void operator()(expr_ref& fml, proof_ref& pr) {
|
|
// TODO apply der everywhere as a rewriting rule.
|
|
// TODO add cancel method.
|
|
if (is_quantifier(fml)) {
|
|
m_der(to_quantifier(fml), fml, pr);
|
|
}
|
|
}
|
|
|
|
};
|
|
|
|
qe_lite::qe_lite(ast_manager& m) {
|
|
m_impl = alloc(impl, m);
|
|
}
|
|
|
|
qe_lite::~qe_lite() {
|
|
dealloc(m_impl);
|
|
}
|
|
|
|
void qe_lite::operator()(app_ref_vector& vars, expr_ref& fml) {
|
|
(*m_impl)(vars, fml);
|
|
}
|
|
|
|
void qe_lite::operator()(expr_ref& fml, proof_ref& pr) {
|
|
(*m_impl)(fml, pr);
|
|
}
|