3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-11 03:33:35 +00:00
z3/src/sat/smt/q_eval.cpp
2021-01-31 16:17:52 -08:00

294 lines
9.3 KiB
C++

/*++
Copyright (c) 2020 Microsoft Corporation
Module Name:
q_eval.cpp
Abstract:
Evaluation of clauses
Author:
Nikolaj Bjorner (nbjorner) 2021-01-24
--*/
#pragma once
#include "sat/smt/q_eval.h"
#include "sat/smt/euf_solver.h"
#include "sat/smt/q_solver.h"
namespace q {
struct eval::scoped_mark_reset {
eval& e;
scoped_mark_reset(eval& e): e(e) {}
~scoped_mark_reset() { e.m_mark.reset(); }
};
eval::eval(euf::solver& ctx):
ctx(ctx),
m(ctx.get_manager())
{}
lbool eval::operator()(euf::enode* const* binding, clause& c, unsigned& idx) {
scoped_mark_reset _sr(*this);
idx = UINT_MAX;
unsigned sz = c.m_lits.size();
unsigned n = c.num_decls();
m_indirect_nodes.reset();
for (unsigned i = 0; i < sz; ++i) {
unsigned lim = m_indirect_nodes.size();
lit l = c[i];
lbool cmp = compare(n, binding, l.lhs, l.rhs);
switch (cmp) {
case l_false:
m_indirect_nodes.shrink(lim);
if (!l.sign)
break;
if (i > 0)
std::swap(c[0], c[i]);
return l_true;
case l_true:
m_indirect_nodes.shrink(lim);
if (l.sign)
break;
if (i > 0)
std::swap(c[0], c[i]);
return l_true;
case l_undef:
TRACE("q", tout << l.lhs << " ~~ " << l.rhs << " is undef\n";);
if (idx == 0) {
idx = UINT_MAX;
return l_undef;
}
if (i > 0)
std::swap(c[0], c[i]);
idx = 0;
break;
}
}
if (idx == UINT_MAX)
return l_false;
return l_undef;
}
lbool eval::operator()(euf::enode* const* binding, clause& c) {
unsigned idx = 0;
return (*this)(binding, c, idx);
}
lbool eval::compare(unsigned n, euf::enode* const* binding, expr* s, expr* t) {
if (s == t)
return l_true;
if (m.are_distinct(s, t))
return l_false;
euf::enode* sn = (*this)(n, binding, s);
euf::enode* tn = (*this)(n, binding, t);
if (sn) sn = sn->get_root();
if (tn) tn = tn->get_root();
TRACE("q", tout << mk_pp(s, m) << " ~~ " << mk_pp(t, m) << "\n";
tout << ctx.bpp(sn) << " " << ctx.bpp(tn) << "\n";);
lbool c;
if (sn && sn == tn)
return l_true;
if (sn && tn && ctx.get_egraph().are_diseq(sn, tn))
return l_false;
if (sn && tn)
return l_undef;
if (!sn && !tn)
return compare_rec(n, binding, s, t);
if (!tn && sn) {
std::swap(tn, sn);
std::swap(t, s);
}
for (euf::enode* t1 : euf::enode_class(tn))
if (c = compare_rec(n, binding, s, t1->get_expr()), c != l_undef)
return c;
return l_undef;
}
// f(p1) = f(p2) if p1 = p2
// f(p1) != f(p2) if p1 != p2 and f is injective
lbool eval::compare_rec(unsigned n, euf::enode* const* binding, expr* s, expr* t) {
if (m.are_equal(s, t))
return l_true;
if (m.are_distinct(s, t))
return l_false;
if (!is_app(s) || !is_app(t))
return l_undef;
if (to_app(s)->get_decl() != to_app(t)->get_decl())
return l_undef;
if (to_app(s)->get_num_args() != to_app(t)->get_num_args())
return l_undef;
bool is_injective = to_app(s)->get_decl()->is_injective();
bool has_undef = false;
for (unsigned i = to_app(s)->get_num_args(); i-- > 0; ) {
switch (compare(n, binding, to_app(s)->get_arg(i), to_app(t)->get_arg(i))) {
case l_true:
break;
case l_false:
if (is_injective)
return l_false;
return l_undef;
case l_undef:
if (!is_injective)
return l_undef;
has_undef = true;
break;
}
}
return has_undef ? l_undef : l_true;
}
euf::enode* eval::operator()(unsigned n, euf::enode* const* binding, expr* e) {
if (is_ground(e))
return ctx.get_egraph().find(e);
if (m_mark.is_marked(e))
return m_eval[e->get_id()];
ptr_buffer<expr> todo;
ptr_buffer<euf::enode> args;
todo.push_back(e);
while (!todo.empty()) {
expr* t = todo.back();
SASSERT(!is_ground(t) || ctx.get_egraph().find(t));
if (is_ground(t)) {
m_eval.setx(t->get_id(), ctx.get_egraph().find(t), nullptr);
SASSERT(m_eval[t->get_id()]);
todo.pop_back();
continue;
}
if (m_mark.is_marked(t)) {
todo.pop_back();
continue;
}
if (is_var(t)) {
m_mark.mark(t);
m_eval.setx(t->get_id(), binding[n - 1 - to_var(t)->get_idx()], nullptr);
todo.pop_back();
continue;
}
if (!is_app(t))
return nullptr;
args.reset();
for (expr* arg : *to_app(t)) {
if (m_mark.is_marked(arg))
args.push_back(m_eval[arg->get_id()]);
else
todo.push_back(arg);
}
if (args.size() == to_app(t)->get_num_args()) {
euf::enode* n = ctx.get_egraph().find(t, args.size(), args.c_ptr());
if (!n)
return nullptr;
m_indirect_nodes.push_back(n);
m_eval.setx(t->get_id(), n, nullptr);
m_mark.mark(t);
todo.pop_back();
}
}
return m_eval[e->get_id()];
}
void eval::explain(clause& c, unsigned literal_idx, euf::enode* const* b) {
unsigned n = c.num_decls();
for (unsigned i = c.size(); i-- > 0; ) {
if (i == literal_idx)
continue;
auto const& lit = c[i];
if (lit.sign)
explain_eq(n, b, lit.lhs, lit.rhs);
else
explain_diseq(n, b, lit.lhs, lit.rhs);
}
}
void eval::explain_eq(unsigned n, euf::enode* const* binding, expr* s, expr* t) {
SASSERT(l_true == compare(n, binding, s, t));
if (s == t)
return;
euf::enode* sn = (*this)(n, binding, s);
euf::enode* tn = (*this)(n, binding, t);
if (sn && tn) {
SASSERT(sn->get_root() == tn->get_root());
ctx.add_antecedent(sn, tn);
return;
}
if (!sn && tn) {
std::swap(sn, tn);
std::swap(s, t);
}
if (sn && !tn) {
for (euf::enode* s1 : euf::enode_class(sn)) {
if (l_true == compare_rec(n, binding, t, s1->get_expr())) {
ctx.add_antecedent(sn, s1);
explain_eq(n, binding, t, s1->get_expr());
return;
}
}
UNREACHABLE();
}
SASSERT(is_app(s) && is_app(t));
SASSERT(to_app(s)->get_decl() == to_app(t)->get_decl());
for (unsigned i = to_app(s)->get_num_args(); i-- > 0; )
explain_eq(n, binding, to_app(s)->get_arg(i), to_app(t)->get_arg(i));
}
void eval::explain_diseq(unsigned n, euf::enode* const* binding, expr* s, expr* t) {
SASSERT(l_false == compare(n, binding, s, t));
if (m.are_distinct(s, t))
return;
euf::enode* sn = (*this)(n, binding, s);
euf::enode* tn = (*this)(n, binding, t);
if (sn && tn && ctx.get_egraph().are_diseq(sn, tn)) {
ctx.add_diseq_antecedent(sn, tn);
return;
}
if (!sn && tn) {
std::swap(sn, tn);
std::swap(s, t);
}
if (sn && !tn) {
for (euf::enode* s1 : euf::enode_class(sn)) {
if (l_false == compare_rec(n, binding, t, s1->get_expr())) {
ctx.add_antecedent(sn, s1);
explain_diseq(n, binding, t, s1->get_expr());
return;
}
}
UNREACHABLE();
}
SASSERT(is_app(s) && is_app(t));
app* at = to_app(t);
app* as = to_app(s);
SASSERT(as->get_decl() == at->get_decl());
for (unsigned i = as->get_num_args(); i-- > 0; ) {
if (l_false == compare_rec(n, binding, as->get_arg(i), at->get_arg(i))) {
explain_eq(n, binding, as->get_arg(i), at->get_arg(i));
return;
}
}
UNREACHABLE();
}
void eval::explain(sat::literal l, justification& j, sat::literal_vector& r, bool probing) {
unsigned l_idx = 0;
clause& c = j.m_clause;
for (; l_idx < c.size(); ++l_idx) {
if (c[l_idx].lhs == j.m_lhs && c[l_idx].rhs == j.m_rhs && c[l_idx].sign == j.m_sign)
break;
}
explain(c, l_idx, j.m_binding);
r.push_back(c.m_literal);
(void)probing; // ignored
}
}