mirror of
https://github.com/Z3Prover/z3
synced 2025-04-10 19:27:06 +00:00
362 lines
12 KiB
C++
362 lines
12 KiB
C++
/*++
|
|
Copyright (c) 2012 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
factor_tactic.cpp
|
|
|
|
Abstract:
|
|
|
|
Polynomial factorization tactic.
|
|
|
|
Author:
|
|
|
|
Leonardo de Moura (leonardo) 2012-02-03
|
|
|
|
Revision History:
|
|
|
|
--*/
|
|
#include"tactical.h"
|
|
#include"expr2polynomial.h"
|
|
#include"rewriter_def.h"
|
|
|
|
class factor_tactic : public tactic {
|
|
|
|
struct rw_cfg : public default_rewriter_cfg {
|
|
ast_manager & m;
|
|
arith_util m_util;
|
|
unsynch_mpq_manager m_qm;
|
|
polynomial::manager m_pm;
|
|
default_expr2polynomial m_expr2poly;
|
|
polynomial::factor_params m_fparams;
|
|
bool m_split_factors;
|
|
|
|
rw_cfg(ast_manager & _m, params_ref const & p):
|
|
m(_m),
|
|
m_util(_m),
|
|
m_pm(m_qm),
|
|
m_expr2poly(m, m_pm) {
|
|
updt_params(p);
|
|
}
|
|
|
|
void updt_params(params_ref const & p) {
|
|
m_split_factors = p.get_bool(":split-factors", true);
|
|
m_fparams.updt_params(p);
|
|
}
|
|
|
|
expr * mk_mul(unsigned sz, expr * const * args) {
|
|
SASSERT(sz > 0);
|
|
if (sz == 1)
|
|
return args[0];
|
|
return m_util.mk_mul(sz, args);
|
|
}
|
|
|
|
expr * mk_zero_for(expr * arg) {
|
|
return m_util.mk_numeral(rational(0), m_util.is_int(arg));
|
|
}
|
|
|
|
// p1^k1 * p2^k2 = 0 --> p1*p2 = 0
|
|
void mk_eq(polynomial::factors const & fs, expr_ref & result) {
|
|
expr_ref_buffer args(m);
|
|
expr_ref arg(m);
|
|
for (unsigned i = 0; i < fs.distinct_factors(); i++) {
|
|
m_expr2poly.to_expr(fs[i], true, arg);
|
|
args.push_back(arg);
|
|
}
|
|
result = m.mk_eq(mk_mul(args.size(), args.c_ptr()), mk_zero_for(arg));
|
|
}
|
|
|
|
// p1^k1 * p2^k2 = 0 --> p1 = 0 or p2 = 0
|
|
void mk_split_eq(polynomial::factors const & fs, expr_ref & result) {
|
|
expr_ref_buffer args(m);
|
|
expr_ref arg(m);
|
|
for (unsigned i = 0; i < fs.distinct_factors(); i++) {
|
|
m_expr2poly.to_expr(fs[i], true, arg);
|
|
args.push_back(m.mk_eq(arg, mk_zero_for(arg)));
|
|
}
|
|
if (args.size() == 1)
|
|
result = args[0];
|
|
else
|
|
result = m.mk_or(args.size(), args.c_ptr());
|
|
}
|
|
|
|
decl_kind flip(decl_kind k) {
|
|
SASSERT(k == OP_LT || k == OP_GT || k == OP_LE || k == OP_GE);
|
|
switch (k) {
|
|
case OP_LT: return OP_GT;
|
|
case OP_LE: return OP_GE;
|
|
case OP_GT: return OP_LT;
|
|
case OP_GE: return OP_LE;
|
|
default:
|
|
UNREACHABLE();
|
|
return k;
|
|
}
|
|
}
|
|
|
|
// p1^{2*k1} * p2^{2*k2 + 1} >=< 0
|
|
// -->
|
|
// (p1^2)*p2 >=<0
|
|
void mk_comp(decl_kind k, polynomial::factors const & fs, expr_ref & result) {
|
|
SASSERT(k == OP_LT || k == OP_GT || k == OP_LE || k == OP_GE);
|
|
expr_ref_buffer args(m);
|
|
expr_ref arg(m);
|
|
for (unsigned i = 0; i < fs.distinct_factors(); i++) {
|
|
m_expr2poly.to_expr(fs[i], true, arg);
|
|
if (fs.get_degree(i) % 2 == 0)
|
|
arg = m_util.mk_power(arg, m_util.mk_numeral(rational(2), m_util.is_int(arg)));
|
|
args.push_back(arg);
|
|
}
|
|
expr * lhs = mk_mul(args.size(), args.c_ptr());
|
|
result = m.mk_app(m_util.get_family_id(), k, lhs, mk_zero_for(lhs));
|
|
}
|
|
|
|
// See mk_split_strict_comp and mk_split_nonstrict_comp
|
|
void split_even_odd(bool strict, polynomial::factors const & fs, expr_ref_buffer & even_eqs, expr_ref_buffer & odd_factors) {
|
|
expr_ref arg(m);
|
|
for (unsigned i = 0; i < fs.distinct_factors(); i++) {
|
|
m_expr2poly.to_expr(fs[i], true, arg);
|
|
if (fs.get_degree(i) % 2 == 0) {
|
|
expr * eq = m.mk_eq(arg, mk_zero_for(arg));
|
|
if (strict)
|
|
even_eqs.push_back(m.mk_not(eq));
|
|
else
|
|
even_eqs.push_back(eq);
|
|
}
|
|
else {
|
|
odd_factors.push_back(arg);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Strict case
|
|
// p1^{2*k1} * p2^{2*k2 + 1} >< 0
|
|
// -->
|
|
// p1 != 0 and p2 >< 0
|
|
//
|
|
// Nonstrict
|
|
// p1^{2*k1} * p2^{2*k2 + 1} >=< 0
|
|
// -->
|
|
// p1 = 0 or p2 >=< 0
|
|
//
|
|
void mk_split_comp(decl_kind k, polynomial::factors const & fs, expr_ref & result) {
|
|
SASSERT(k == OP_LT || k == OP_GT || k == OP_LE || k == OP_GE);
|
|
bool strict = (k == OP_LT) || (k == OP_GT);
|
|
expr_ref_buffer args(m);
|
|
expr_ref_buffer odd_factors(m);
|
|
split_even_odd(strict, fs, args, odd_factors);
|
|
if (odd_factors.empty()) {
|
|
if (k == OP_LT) {
|
|
result = m.mk_false();
|
|
return;
|
|
}
|
|
if (k == OP_GE) {
|
|
result = m.mk_true();
|
|
return;
|
|
}
|
|
}
|
|
else {
|
|
args.push_back(m.mk_app(m_util.get_family_id(), k, mk_mul(odd_factors.size(), odd_factors.c_ptr()), mk_zero_for(odd_factors[0])));
|
|
}
|
|
SASSERT(!args.empty());
|
|
if (args.size() == 1)
|
|
result = args[0];
|
|
else if (strict)
|
|
result = m.mk_and(args.size(), args.c_ptr());
|
|
else
|
|
result = m.mk_or(args.size(), args.c_ptr());
|
|
}
|
|
|
|
br_status factor(func_decl * f, expr * lhs, expr * rhs, expr_ref & result) {
|
|
polynomial_ref p1(m_pm);
|
|
polynomial_ref p2(m_pm);
|
|
scoped_mpz d1(m_qm);
|
|
scoped_mpz d2(m_qm);
|
|
m_expr2poly.to_polynomial(lhs, p1, d1);
|
|
m_expr2poly.to_polynomial(rhs, p2, d2);
|
|
TRACE("factor_tactic_bug",
|
|
tout << "lhs: " << mk_ismt2_pp(lhs, m) << "\n";
|
|
tout << "p1: " << p1 << "\n";
|
|
tout << "d1: " << d1 << "\n";
|
|
tout << "rhs: " << mk_ismt2_pp(rhs, m) << "\n";
|
|
tout << "p2: " << p2 << "\n";
|
|
tout << "d2: " << d2 << "\n";);
|
|
scoped_mpz lcm(m_qm);
|
|
m_qm.lcm(d1, d2, lcm);
|
|
m_qm.div(lcm, d1, d1);
|
|
m_qm.div(lcm, d2, d2);
|
|
m_qm.neg(d2);
|
|
polynomial_ref p(m_pm);
|
|
p = m_pm.addmul(d1, m_pm.mk_unit(), p1, d2, m_pm.mk_unit(), p2);
|
|
if (is_const(p))
|
|
return BR_FAILED;
|
|
polynomial::factors fs(m_pm);
|
|
TRACE("factor_tactic_bug", tout << "p: " << p << "\n";);
|
|
m_pm.factor(p, fs, m_fparams);
|
|
SASSERT(fs.distinct_factors() > 0);
|
|
TRACE("factor_tactic_bug", tout << "factors:\n"; fs.display(tout); tout << "\n";);
|
|
if (fs.distinct_factors() == 1 && fs.get_degree(0) == 1)
|
|
return BR_FAILED;
|
|
if (m.is_eq(f)) {
|
|
if (m_split_factors)
|
|
mk_split_eq(fs, result);
|
|
else
|
|
mk_eq(fs, result);
|
|
}
|
|
else {
|
|
decl_kind k = f->get_decl_kind();
|
|
if (m_qm.is_neg(fs.get_constant()))
|
|
k = flip(k);
|
|
|
|
if (m_split_factors)
|
|
mk_split_comp(k, fs, result);
|
|
else
|
|
mk_comp(k, fs, result);
|
|
}
|
|
return BR_DONE;
|
|
}
|
|
|
|
br_status reduce_app(func_decl * f, unsigned num, expr * const * args, expr_ref & result, proof_ref & result_pr) {
|
|
if (num != 2)
|
|
return BR_FAILED;
|
|
if (m.is_eq(f) && (m_util.is_arith_expr(args[0]) || m_util.is_arith_expr(args[1])))
|
|
return factor(f, args[0], args[1], result);
|
|
if (f->get_family_id() != m_util.get_family_id())
|
|
return BR_FAILED;
|
|
switch (f->get_decl_kind()) {
|
|
case OP_LT:
|
|
case OP_GT:
|
|
case OP_LE:
|
|
case OP_GE:
|
|
return factor(f, args[0], args[1], result);
|
|
}
|
|
return BR_FAILED;
|
|
}
|
|
};
|
|
|
|
struct rw : public rewriter_tpl<rw_cfg> {
|
|
rw_cfg m_cfg;
|
|
|
|
rw(ast_manager & m, params_ref const & p):
|
|
rewriter_tpl<rw_cfg>(m, m.proofs_enabled(), m_cfg),
|
|
m_cfg(m, p) {
|
|
}
|
|
};
|
|
|
|
struct imp {
|
|
ast_manager & m;
|
|
rw m_rw;
|
|
|
|
imp(ast_manager & _m, params_ref const & p):
|
|
m(_m),
|
|
m_rw(m, p) {
|
|
}
|
|
|
|
void set_cancel(bool f) {
|
|
m_rw.set_cancel(f);
|
|
m_rw.cfg().m_pm.set_cancel(f);
|
|
}
|
|
|
|
void updt_params(params_ref const & p) {
|
|
m_rw.cfg().updt_params(p);
|
|
}
|
|
|
|
void operator()(goal_ref const & g,
|
|
goal_ref_buffer & result,
|
|
model_converter_ref & mc,
|
|
proof_converter_ref & pc,
|
|
expr_dependency_ref & core) {
|
|
SASSERT(g->is_well_sorted());
|
|
mc = 0; pc = 0; core = 0;
|
|
tactic_report report("factor", *g);
|
|
bool produce_proofs = g->proofs_enabled();
|
|
|
|
expr_ref new_curr(m);
|
|
proof_ref new_pr(m);
|
|
unsigned size = g->size();
|
|
for (unsigned idx = 0; idx < size; idx++) {
|
|
expr * curr = g->form(idx);
|
|
m_rw(curr, new_curr, new_pr);
|
|
if (produce_proofs) {
|
|
proof * pr = g->pr(idx);
|
|
new_pr = m.mk_modus_ponens(pr, new_pr);
|
|
}
|
|
g->update(idx, new_curr, new_pr, g->dep(idx));
|
|
}
|
|
g->inc_depth();
|
|
result.push_back(g.get());
|
|
TRACE("factor", g->display(tout););
|
|
SASSERT(g->is_well_sorted());
|
|
}
|
|
};
|
|
|
|
imp * m_imp;
|
|
params_ref m_params;
|
|
public:
|
|
factor_tactic(ast_manager & m, params_ref const & p):
|
|
m_params(p) {
|
|
m_imp = alloc(imp, m, p);
|
|
}
|
|
|
|
virtual tactic * translate(ast_manager & m) {
|
|
return alloc(factor_tactic, m, m_params);
|
|
}
|
|
|
|
virtual ~factor_tactic() {
|
|
dealloc(m_imp);
|
|
}
|
|
|
|
virtual void updt_params(params_ref const & p) {
|
|
m_params = p;
|
|
m_imp->m_rw.cfg().updt_params(p);
|
|
}
|
|
|
|
virtual void collect_param_descrs(param_descrs & r) {
|
|
r.insert(":split-factors", CPK_BOOL,
|
|
"(default: true) apply simplifications such as (= (* p1 p2) 0) --> (or (= p1 0) (= p2 0)).");
|
|
polynomial::factor_params::get_param_descrs(r);
|
|
}
|
|
|
|
virtual void operator()(goal_ref const & in,
|
|
goal_ref_buffer & result,
|
|
model_converter_ref & mc,
|
|
proof_converter_ref & pc,
|
|
expr_dependency_ref & core) {
|
|
try {
|
|
(*m_imp)(in, result, mc, pc, core);
|
|
}
|
|
catch (z3_error & ex) {
|
|
throw ex;
|
|
}
|
|
catch (z3_exception & ex) {
|
|
throw tactic_exception(ex.msg());
|
|
}
|
|
}
|
|
|
|
virtual void cleanup() {
|
|
ast_manager & m = m_imp->m;
|
|
imp * d = m_imp;
|
|
#pragma omp critical (tactic_cancel)
|
|
{
|
|
m_imp = 0;
|
|
}
|
|
dealloc(d);
|
|
d = alloc(imp, m, m_params);
|
|
#pragma omp critical (tactic_cancel)
|
|
{
|
|
m_imp = d;
|
|
}
|
|
}
|
|
|
|
virtual void set_cancel(bool f) {
|
|
if (m_imp)
|
|
m_imp->set_cancel(f);
|
|
}
|
|
};
|
|
|
|
tactic * mk_factor_tactic(ast_manager & m, params_ref const & p) {
|
|
return clean(alloc(factor_tactic, m, p));
|
|
}
|
|
|
|
|
|
|