3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-05-09 16:55:47 +00:00
z3/src/math/polysat/umul_ovfl_constraint.cpp
2022-12-14 11:07:16 +01:00

166 lines
5.2 KiB
C++

/*++
Copyright (c) 2021 Microsoft Corporation
Module Name:
polysat multiplication overflow constraint
Author:
Jakob Rath, Nikolaj Bjorner (nbjorner) 2021-12-09
--*/
#include "math/polysat/umul_ovfl_constraint.h"
#include "math/polysat/solver.h"
namespace polysat {
umul_ovfl_constraint::umul_ovfl_constraint(constraint_manager& m, pdd const& p, pdd const& q):
constraint(m, ckind_t::umul_ovfl_t), m_p(p), m_q(q) {
simplify();
m_vars.append(m_p.free_vars());
for (auto v : m_q.free_vars())
if (!m_vars.contains(v))
m_vars.push_back(v);
}
void umul_ovfl_constraint::simplify() {
if (m_p.is_zero() || m_q.is_zero() ||
m_p.is_one() || m_q.is_one()) {
m_q = 0;
m_p = 0;
return;
}
if (m_p.index() > m_q.index())
std::swap(m_p, m_q);
}
std::ostream& umul_ovfl_constraint::display(std::ostream& out, lbool status) const {
switch (status) {
case l_true: return display(out);
case l_false: return display(out << "~");
case l_undef: return display(out << "?");
}
return out;
}
std::ostream& umul_ovfl_constraint::display(std::ostream& out) const {
return out << "ovfl*(" << m_p << ", " << m_q << ")";
}
lbool umul_ovfl_constraint::eval(pdd const& p, pdd const& q) {
if (p.is_zero() || q.is_zero() || p.is_one() || q.is_one())
return l_false;
if (p.is_val() && q.is_val()) {
if (p.val() * q.val() > p.manager().max_value())
return l_true;
else
return l_false;
}
return l_undef;
}
lbool umul_ovfl_constraint::eval() const {
return eval(p(), q());
}
lbool umul_ovfl_constraint::eval(assignment const& a) const {
return eval(a.apply_to(p()), a.apply_to(q()));
}
void umul_ovfl_constraint::narrow(solver& s, bool is_positive, bool first) {
auto p1 = s.subst(p());
auto q1 = s.subst(q());
if (is_always_false(is_positive, p1, q1)) {
s.set_conflict({ this, is_positive });
return;
}
if (is_always_true(is_positive, p1, q1))
return;
if (first)
activate(s, is_positive);
if (try_viable(s, is_positive, p(), q(), p1, q1))
return;
if (narrow_bound(s, is_positive, p(), q(), p1, q1))
return;
if (narrow_bound(s, is_positive, q(), p(), q1, p1))
return;
}
void umul_ovfl_constraint::activate(solver& s, bool is_positive) {
// TODO - remove to enable
return;
if (!is_positive) {
signed_constraint sc(this, is_positive);
// ¬Omega(p, q) ==> q = 0 \/ p <= p*q
// ¬Omega(p, q) ==> p = 0 \/ q <= p*q
s.add_clause(~sc, /* s.eq(p()), */ s.eq(q()), s.ule(p(), p()*q()), false);
s.add_clause(~sc, s.eq(p()), /* s.eq(q()), */ s.ule(q(), p()*q()), false);
}
}
/**
* if p constant, q, propagate inequality
*/
bool umul_ovfl_constraint::narrow_bound(solver& s, bool is_positive,
pdd const& p0, pdd const& q0, pdd const& p, pdd const& q) {
if (!p.is_val())
return false;
SASSERT(!p.is_zero() && !p.is_one());
auto const& max = p.manager().max_value();
// p * q >= max + 1 <=> q >= (max + 1)/p <=> q >= ceil((max+1)/p)
auto bound = ceil((max + 1) / p.val());
//
// the clause that explains bound <= q or bound > q
//
// Ovfl(p, q) & p <= p.val() => q >= bound
// ~Ovfl(p, q) & p >= p.val() => q < bound
//
signed_constraint sc(this, is_positive);
signed_constraint premise = is_positive ? s.ule(p0, p.val()) : s.ule(p.val(), p0);
signed_constraint conseq = is_positive ? s.ule(bound, q0) : s.ult(q0, bound);
SASSERT(premise.is_currently_true(s));
SASSERT(bound * p.val() > max);
SASSERT((bound - 1) * p.val() <= max);
clause_builder cb(s);
cb.insert_eval(~sc);
cb.insert_eval(~premise);
cb.insert(conseq);
clause_ref just = cb.build();
SASSERT(just);
s.add_clause(*just);
SASSERT(s.m_bvars.is_true(conseq.blit()));
return true;
}
bool umul_ovfl_constraint::try_viable(
solver& s, bool is_positive,
pdd const& p0, pdd const& q0, pdd const& p, pdd const& q) {
signed_constraint sc(this, is_positive);
return s.m_viable.intersect(p0, q0, sc);
}
unsigned umul_ovfl_constraint::hash() const {
return mk_mix(p().hash(), q().hash(), kind());
}
bool umul_ovfl_constraint::operator==(constraint const& other) const {
return other.is_umul_ovfl() && p() == other.to_umul_ovfl().p() && q() == other.to_umul_ovfl().q();
}
void umul_ovfl_constraint::add_to_univariate_solver(solver& s, univariate_solver& us, unsigned dep, bool is_positive) const {
auto p_coeff = s.subst(p()).get_univariate_coefficients();
auto q_coeff = s.subst(q()).get_univariate_coefficients();
us.add_umul_ovfl(p_coeff, q_coeff, !is_positive, dep);
}
}