3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-07 09:55:19 +00:00
z3/src/ast/euf/euf_egraph.cpp
Nikolaj Bjorner 44679d8f5b
arith_solver (#4733)
* porting arithmetic solver

* integrating arithmetic

* lp

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* na

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* na

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* na

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2020-10-16 10:49:46 -07:00

812 lines
29 KiB
C++

/*++
Copyright (c) 2020 Microsoft Corporation
Module Name:
euf_egraph.cpp
Abstract:
E-graph layer
Author:
Nikolaj Bjorner (nbjorner) 2020-08-23
Notes:
Each node has a congruence closure root, cg.
cg is set to the representative in the cc table
(first insertion of congruent node).
Each node n has a set of parents, denoted n.P.
The table maintains the invariant
- p.cg = find(p)
Merge sets r2 to the root of r1
(r2 and r1 are both considered roots before the merge).
The operation Unmerge reverses the effect of Merge.
Merge(r1, r2)
-------------
Erase: for each p in r1.P such that p.cg == p:
erase from table
Update root: r1.root := r2
Insert: for each p in r1.P:
p.cg = insert p in table
if p.cg == p:
append p to r2.P
else
add (p.cg == p) to 'to_merge'
Unmerge(r1, r2)
---------------
Erase: for each p in r2.P added from r1.P:
erase p from table
Revert root: r1.root := r1
Insert: for each p in r1.P:
insert p if n was cc root before merge
condition for being cc root before merge:
p.cg == p or !congruent(p, p.cg)
congruent(p,q) := roots of p.args = roots of q.args
The algorithm orients r1, r2 such that class_size(r1) <= class_size(r2).
With N nodes, there can be at most N calls to Merge.
Each of the calls traverse r1.P from the smaller class size.
Label a merge tree with nodes from the larger class size.
In other words, if Merge(r2,r1); Merge(r3,r1) is a sequence
of calls where r1 is selected root, then the merge tree is
r1
/ \
r1 r3
\
r2
Note that parent lists are re-examined only for nodes that join
from right subtrees (with lesser class sizes).
Claim: a node participates in a path along right adjoining sub-trees at most O(log(N)) times.
Justification (very roughly): the size of a right adjoining subtree can at most
be equal to the left adjoining sub-tree. This entails a logarithmic number of
re-examinations from the right adjoining tree.
(TBD check how Hopcroft's main argument is phrased)
The parent lists are bounded by the maximal arity of functions.
Example:
Initially:
n1 := f(a,b) has root n1
n2 := f(a',b) has root n2
table = [f(a,b) |-> n1, f(a',b) |-> n2]
merge(a,a') (a' becomes root)
table = [f(a',b) |-> n2]
n1.cg = n2
a'.P = [n2]
n1 is not added as parent because it is not a cc root after the assignment a.root := a'
unmerge(a,a')
- nothing is erased
- n1 is reinserted. It used to be a root.
--*/
#include "ast/euf/euf_egraph.h"
#include "ast/ast_pp.h"
#include "ast/ast_translation.h"
namespace euf {
enode* egraph::mk_enode(expr* f, unsigned num_args, enode * const* args) {
enode* n = enode::mk(m_region, f, num_args, args);
m_nodes.push_back(n);
m_exprs.push_back(f);
if (is_app(f) && num_args > 0) {
unsigned id = to_app(f)->get_decl()->get_decl_id();
m_decl2enodes.reserve(id+1);
m_decl2enodes[id].push_back(n);
}
m_expr2enode.setx(f->get_id(), n, nullptr);
push_node(n);
for (unsigned i = 0; i < num_args; ++i)
set_merge_enabled(args[i], true);
return n;
}
enode_vector const& egraph::enodes_of(func_decl* f) {
unsigned id = f->get_decl_id();
if (id < m_decl2enodes.size())
return m_decl2enodes[id];
return m_empty_enodes;
}
enode_bool_pair egraph::insert_table(enode* p) {
auto rc = m_table.insert(p);
p->m_cg = rc.first;
return rc;
}
void egraph::reinsert_equality(enode* p) {
SASSERT(p->is_equality());
if (p->value() != l_true && p->get_arg(0)->get_root() == p->get_arg(1)->get_root()) {
add_literal(p, true);
}
}
void egraph::force_push() {
if (m_num_scopes == 0)
return;
// DEBUG_CODE(invariant(););
for (; m_num_scopes > 0; --m_num_scopes) {
m_scopes.push_back(m_updates.size());
m_region.push_scope();
}
m_updates.push_back(update_record(m_new_th_eqs_qhead, update_record::new_th_eq_qhead()));
m_updates.push_back(update_record(m_new_lits_qhead, update_record::new_lits_qhead()));
SASSERT(m_new_lits_qhead <= m_new_lits.size());
SASSERT(m_new_th_eqs_qhead <= m_new_th_eqs.size());
}
void egraph::update_children(enode* n) {
for (enode* child : enode_args(n))
child->get_root()->add_parent(n);
n->set_update_children();
}
enode* egraph::mk(expr* f, unsigned num_args, enode *const* args) {
SASSERT(!find(f));
force_push();
enode *n = mk_enode(f, num_args, args);
SASSERT(n->class_size() == 1);
if (num_args == 0 && m.is_unique_value(f))
n->mark_interpreted();
if (num_args == 0)
return n;
if (m.is_eq(f)) {
n->set_is_equality();
update_children(n);
reinsert_equality(n);
return n;
}
enode_bool_pair p = insert_table(n);
enode* n2 = p.first;
if (n2 == n)
update_children(n);
else
merge(n, n2, justification::congruence(p.second));
return n;
}
egraph::egraph(ast_manager& m) : m(m), m_table(m), m_exprs(m) {
m_tmp_eq = enode::mk_tmp(m_region, 2);
// m_updates.reserve(10000, update_record(nullptr));
}
egraph::~egraph() {
for (enode* n : m_nodes)
n->m_parents.finalize();
}
void egraph::add_th_eq(theory_id id, theory_var v1, theory_var v2, enode* c, enode* r) {
TRACE("euf_verbose", tout << "eq: " << v1 << " == " << v2 << "\n";);
m_new_th_eqs.push_back(th_eq(id, v1, v2, c, r));
m_updates.push_back(update_record(update_record::new_th_eq()));
++m_stats.m_num_th_eqs;
}
void egraph::add_th_diseq(theory_id id, theory_var v1, theory_var v2, expr* eq) {
if (!th_propagates_diseqs(id))
return;
TRACE("euf_verbose", tout << "eq: " << v1 << " != " << v2 << "\n";);
m_new_th_eqs.push_back(th_eq(id, v1, v2, eq));
m_updates.push_back(update_record(update_record::new_th_eq()));
++m_stats.m_num_th_diseqs;
}
void egraph::add_literal(enode* n, bool is_eq) {
TRACE("euf_verbose", tout << "lit: " << n->get_expr_id() << "\n";);
m_new_lits.push_back(enode_bool_pair(n, is_eq));
m_updates.push_back(update_record(update_record::new_lit()));
if (is_eq) ++m_stats.m_num_eqs; else ++m_stats.m_num_lits;
}
void egraph::new_diseq(enode* n) {
SASSERT(n->is_equality());
SASSERT(n->value() == l_false);
enode* arg1 = n->get_arg(0), * arg2 = n->get_arg(1);
enode* r1 = arg1->get_root();
enode* r2 = arg2->get_root();
TRACE("euf", tout << "new-diseq: " << bpp(r1) << " " << bpp(r2) << ": " << r1->has_th_vars() << " " << r2->has_th_vars() << "\n";);
if (r1 == r2) {
add_literal(n, true);
return;
}
if (!r1->has_th_vars())
return;
if (!r2->has_th_vars())
return;
if (r1->has_one_th_var() && r2->has_one_th_var() && r1->get_first_th_id() == r2->get_first_th_id()) {
theory_id id = r1->get_first_th_id();
if (!th_propagates_diseqs(id))
return;
theory_var v1 = arg1->get_closest_th_var(id);
theory_var v2 = arg2->get_closest_th_var(id);
add_th_diseq(id, v1, v2, n->get_expr());
return;
}
for (auto p : euf::enode_th_vars(r1)) {
if (!th_propagates_diseqs(p.get_id()))
continue;
for (auto q : euf::enode_th_vars(r2))
if (p.get_id() == q.get_id())
add_th_diseq(p.get_id(), p.get_var(), q.get_var(), n->get_expr());
}
}
/*
* Propagate disequalities over equality atoms that are assigned to false.
*/
void egraph::add_th_diseqs(theory_id id, theory_var v1, enode* r) {
SASSERT(r->is_root());
if (!th_propagates_diseqs(id))
return;
for (enode* p : enode_parents(r)) {
if (p->is_equality() && p->value() == l_false) {
enode* n = nullptr;
n = (r == p->get_arg(0)->get_root()) ? p->get_arg(1) : p->get_arg(0);
n = n->get_root();
theory_var v2 = n->get_closest_th_var(id);
if (v2 != null_theory_var)
add_th_diseq(id, v1, v2, p->get_expr());
}
}
}
void egraph::set_th_propagates_diseqs(theory_id id) {
m_th_propagates_diseqs.reserve(id + 1, false);
m_th_propagates_diseqs[id] = true;
}
bool egraph::th_propagates_diseqs(theory_id id) const {
return m_th_propagates_diseqs.get(id, false);
}
void egraph::add_th_var(enode* n, theory_var v, theory_id id) {
force_push();
theory_var w = n->get_th_var(id);
enode* r = n->get_root();
if (w == null_theory_var) {
n->add_th_var(v, id, m_region);
m_updates.push_back(update_record(n, id, update_record::add_th_var()));
if (r != n) {
theory_var u = r->get_th_var(id);
if (u == null_theory_var) {
r->add_th_var(v, id, m_region);
add_th_diseqs(id, v, r);
}
else
add_th_eq(id, v, u, n, r);
}
}
else {
theory_var u = r->get_th_var(id);
SASSERT(u != v && u != null_theory_var);
n->replace_th_var(v, id);
m_updates.push_back(update_record(n, id, u, update_record::replace_th_var()));
add_th_eq(id, v, u, n, r);
}
}
void egraph::undo_add_th_var(enode* n, theory_id tid) {
theory_var v = n->get_th_var(tid);
SASSERT(v != null_theory_var);
n->del_th_var(tid);
enode* root = n->get_root();
if (root != n && root->get_th_var(tid) == v)
root->del_th_var(tid);
}
void egraph::set_merge_enabled(enode* n, bool enable_merge) {
if (enable_merge != n->merge_enabled()) {
m_updates.push_back(update_record(n, update_record::toggle_merge()));
n->set_merge_enabled(enable_merge);
}
}
void egraph::set_value(enode* n, lbool value) {
force_push();
TRACE("euf", tout << bpp(n) << "\n";);
SASSERT(n->value() == l_undef);
n->set_value(value);
m_updates.push_back(update_record(n, update_record::value_assignment()));
}
void egraph::pop(unsigned num_scopes) {
if (num_scopes <= m_num_scopes) {
m_num_scopes -= num_scopes;
return;
}
num_scopes -= m_num_scopes;
m_num_scopes = 0;
SASSERT(m_new_lits_qhead <= m_new_lits.size());
unsigned old_lim = m_scopes.size() - num_scopes;
unsigned num_updates = m_scopes[old_lim];
auto undo_node = [&]() {
enode* n = m_nodes.back();
expr* e = m_exprs.back();
if (n->num_args() > 0 && n->is_cgr())
m_table.erase(n);
m_expr2enode[e->get_id()] = nullptr;
n->~enode();
if (is_app(e) && n->num_args() > 0)
m_decl2enodes[to_app(e)->get_decl()->get_decl_id()].pop_back();
m_nodes.pop_back();
m_exprs.pop_back();
};
for (unsigned i = m_updates.size(); i-- > num_updates; ) {
auto const& p = m_updates[i];
switch (p.tag) {
case update_record::tag_t::is_add_node:
undo_node();
break;
case update_record::tag_t::is_toggle_merge:
p.r1->set_merge_enabled(!p.r1->merge_enabled());
break;
case update_record::tag_t::is_set_parent:
undo_eq(p.r1, p.n1, p.r2_num_parents);
break;
case update_record::tag_t::is_add_th_var:
undo_add_th_var(p.r1, p.r2_num_parents);
break;
case update_record::tag_t::is_replace_th_var:
SASSERT(p.r1->get_th_var(p.m_th_id) != null_theory_var);
p.r1->replace_th_var(p.m_old_th_var, p.m_th_id);
break;
case update_record::tag_t::is_new_lit:
m_new_lits.pop_back();
break;
case update_record::tag_t::is_new_th_eq:
m_new_th_eqs.pop_back();
break;
case update_record::tag_t::is_new_th_eq_qhead:
m_new_th_eqs_qhead = p.qhead;
break;
case update_record::tag_t::is_new_lits_qhead:
m_new_lits_qhead = p.qhead;
break;
case update_record::tag_t::is_inconsistent:
m_inconsistent = p.m_inconsistent;
break;
case update_record::tag_t::is_value_assignment:
VERIFY(p.r1->value() != l_undef);
p.r1->set_value(l_undef);
break;
default:
UNREACHABLE();
break;
}
}
m_updates.shrink(num_updates);
m_scopes.shrink(old_lim);
m_region.pop_scope(num_scopes);
m_to_merge.reset();
SASSERT(m_new_lits_qhead <= m_new_lits.size());
SASSERT(m_new_th_eqs_qhead <= m_new_th_eqs.size());
// DEBUG_CODE(invariant(););
}
void egraph::merge(enode* n1, enode* n2, justification j) {
if (!n1->merge_enabled() && !n2->merge_enabled())
return;
SASSERT(m.get_sort(n1->get_expr()) == m.get_sort(n2->get_expr()));
enode* r1 = n1->get_root();
enode* r2 = n2->get_root();
if (r1 == r2)
return;
TRACE("euf", j.display(tout << "merge: " << bpp(n1) << " == " << bpp(n2) << " ", m_display_justification) << "\n";);
IF_VERBOSE(20, j.display(verbose_stream() << "merge: " << bpp(n1) << " == " << bpp(n2) << " ", m_display_justification) << "\n";);
force_push();
SASSERT(m_num_scopes == 0);
++m_stats.m_num_merge;
if (r1->interpreted() && r2->interpreted()) {
set_conflict(n1, n2, j);
return;
}
if (!r2->interpreted() &&
(r1->class_size() > r2->class_size() || r1->interpreted() || r1->value() != l_undef)) {
std::swap(r1, r2);
std::swap(n1, n2);
}
if (j.is_congruence() && (m.is_false(r2->get_expr()) || m.is_true(r2->get_expr())))
add_literal(n1, false);
if (n1->is_equality() && n1->value() == l_false)
new_diseq(n1);
remove_parents(r1, r2);
push_eq(r1, n1, r2->num_parents());
merge_justification(n1, n2, j);
for (enode* c : enode_class(n1))
c->m_root = r2;
std::swap(r1->m_next, r2->m_next);
r2->inc_class_size(r1->class_size());
merge_th_eq(r1, r2);
reinsert_parents(r1, r2);
}
void egraph::remove_parents(enode* r1, enode* r2) {
for (enode* p : enode_parents(r1)) {
if (p->is_marked1())
continue;
if (p->merge_enabled()) {
if (!p->is_cgr())
continue;
SASSERT(m_table.contains_ptr(p));
p->mark1();
m_table.erase(p);
SASSERT(!m_table.contains_ptr(p));
}
else if (p->is_equality())
p->mark1();
}
}
void egraph::reinsert_parents(enode* r1, enode* r2) {
for (enode* p : enode_parents(r1)) {
if (!p->is_marked1())
continue;
p->unmark1();
if (p->merge_enabled()) {
auto rc = insert_table(p);
enode* p_other = rc.first;
SASSERT(m_table.contains_ptr(p) == (p_other == p));
if (p_other != p)
m_to_merge.push_back(to_merge(p_other, p, rc.second));
else
r2->m_parents.push_back(p);
}
else if (p->is_equality()) {
r2->m_parents.push_back(p);
reinsert_equality(p);
}
}
}
void egraph::merge_th_eq(enode* n, enode* root) {
SASSERT(n != root);
for (auto iv : enode_th_vars(n)) {
theory_id id = iv.get_id();
theory_var v = root->get_th_var(id);
if (v == null_theory_var) {
root->add_th_var(iv.get_var(), id, m_region);
m_updates.push_back(update_record(root, id, update_record::add_th_var()));
add_th_diseqs(id, iv.get_var(), root);
}
else {
SASSERT(v != iv.get_var());
add_th_eq(id, v, iv.get_var(), n, root);
}
}
}
void egraph::undo_eq(enode* r1, enode* n1, unsigned r2_num_parents) {
enode* r2 = r1->get_root();
TRACE("euf", tout << "undo-eq old-root: " << bpp(r1) << " current-root " << bpp(r2) << " node: " << bpp(n1) << "\n";);
r2->dec_class_size(r1->class_size());
std::swap(r1->m_next, r2->m_next);
auto begin = r2->begin_parents() + r2_num_parents, end = r2->end_parents();
for (auto it = begin; it != end; ++it) {
enode* p = *it;
TRACE("euf", tout << "erase " << bpp(p) << "\n";);
SASSERT(!p->merge_enabled() || m_table.contains_ptr(p));
SASSERT(!p->merge_enabled() || p->is_cgr());
if (p->merge_enabled())
m_table.erase(p);
}
for (enode* c : enode_class(r1))
c->m_root = r1;
for (enode* p : enode_parents(r1))
if (p->merge_enabled() && (p->is_cgr() || !p->congruent(p->m_cg)))
insert_table(p);
r2->m_parents.shrink(r2_num_parents);
unmerge_justification(n1);
}
bool egraph::propagate() {
SASSERT(m_new_lits_qhead <= m_new_lits.size());
SASSERT(m_num_scopes == 0 || m_to_merge.empty());
for (unsigned i = 0; i < m_to_merge.size() && m.limit().inc() && !inconsistent(); ++i) {
auto const& w = m_to_merge[i];
merge(w.a, w.b, justification::congruence(w.commutativity));
}
m_to_merge.reset();
force_push();
return
(m_new_lits_qhead < m_new_lits.size()) ||
(m_new_th_eqs_qhead < m_new_th_eqs.size()) ||
inconsistent();
}
void egraph::set_conflict(enode* n1, enode* n2, justification j) {
++m_stats.m_num_conflicts;
if (m_inconsistent)
return;
m_inconsistent = true;
m_updates.push_back(update_record(false, update_record::inconsistent()));
m_n1 = n1;
m_n2 = n2;
m_justification = j;
}
void egraph::merge_justification(enode* n1, enode* n2, justification j) {
SASSERT(!n1->get_root()->m_target);
SASSERT(!n2->get_root()->m_target);
SASSERT(n1->reaches(n1->get_root()));
SASSERT(!n2->reaches(n1->get_root()));
SASSERT(!n2->reaches(n1));
n1->reverse_justification();
n1->m_target = n2;
n1->m_justification = j;
SASSERT(n1->acyclic());
SASSERT(n2->acyclic());
SASSERT(n1->get_root()->reaches(n1));
SASSERT(!n2->get_root()->m_target);
TRACE("euf_verbose", tout << "merge " << n1->get_expr_id() << " " << n2->get_expr_id() << " updates: " << m_updates.size() << "\n";);
}
void egraph::unmerge_justification(enode* n1) {
TRACE("euf_verbose", tout << "unmerge " << n1->get_expr_id() << " " << n1->m_target->get_expr_id() << "\n";);
// r1 -> .. -> n1 -> n2 -> ... -> r2
// where n2 = n1->m_target
SASSERT(n1->get_root()->reaches(n1));
SASSERT(n1->m_target);
n1->m_target = nullptr;
n1->m_justification = justification::axiom();
n1->get_root()->reverse_justification();
// ---------------
// n1 -> ... -> r1
// n2 -> ... -> r2
SASSERT(n1->reaches(n1->get_root()));
SASSERT(!n1->get_root()->m_target);
}
bool egraph::are_diseq(enode* a, enode* b) const {
enode* ra = a->get_root(), * rb = b->get_root();
if (ra == rb)
return false;
if (ra->interpreted() && rb->interpreted())
return true;
if (m.get_sort(ra->get_expr()) != m.get_sort(rb->get_expr()))
return true;
expr_ref eq(m.mk_eq(a->get_expr(), b->get_expr()), m);
m_tmp_eq->m_args[0] = a;
m_tmp_eq->m_args[1] = b;
m_tmp_eq->m_expr = eq;
SASSERT(m_tmp_eq->num_args() == 2);
enode* r = m_table.find(m_tmp_eq);
if (r && r->get_root()->value() == l_false)
return true;
return false;
}
/**
\brief generate an explanation for a congruence.
Each pair of children under a congruence have the same roots
and therefore have a least common ancestor. We only need
explanations up to the least common ancestors.
*/
void egraph::push_congruence(enode* n1, enode* n2, bool comm) {
SASSERT(is_app(n1->get_expr()));
SASSERT(n1->get_decl() == n2->get_decl());
if (m_used_cc && !comm) {
m_used_cc(to_app(n1->get_expr()), to_app(n2->get_expr()));
}
if (comm &&
n1->get_arg(0)->get_root() == n2->get_arg(1)->get_root() &&
n1->get_arg(1)->get_root() == n2->get_arg(0)->get_root()) {
push_lca(n1->get_arg(0), n2->get_arg(1));
push_lca(n1->get_arg(1), n2->get_arg(0));
return;
}
for (unsigned i = 0; i < n1->num_args(); ++i)
push_lca(n1->get_arg(i), n2->get_arg(i));
}
enode* egraph::find_lca(enode* a, enode* b) {
SASSERT(a->get_root() == b->get_root());
a->mark2_targets<true>();
while (!b->is_marked2())
b = b->m_target;
a->mark2_targets<false>();
return b;
}
void egraph::push_to_lca(enode* n, enode* lca) {
while (n != lca) {
m_todo.push_back(n);
n = n->m_target;
}
}
void egraph::push_lca(enode* a, enode* b) {
enode* lca = find_lca(a, b);
push_to_lca(a, lca);
push_to_lca(b, lca);
}
void egraph::push_todo(enode* n) {
while (n) {
m_todo.push_back(n);
n = n->m_target;
}
}
void egraph::begin_explain() {
SASSERT(m_todo.empty());
}
void egraph::end_explain() {
for (enode* n : m_todo)
n->unmark1();
DEBUG_CODE(for (enode* n : m_nodes) SASSERT(!n->is_marked1()););
m_todo.reset();
}
template <typename T>
void egraph::explain(ptr_vector<T>& justifications) {
SASSERT(m_inconsistent);
push_todo(m_n1);
push_todo(m_n2);
explain_eq(justifications, m_n1, m_n2, m_justification);
explain_todo(justifications);
}
template <typename T>
void egraph::explain_eq(ptr_vector<T>& justifications, enode* a, enode* b) {
SASSERT(a->get_root() == b->get_root());
enode* lca = find_lca(a, b);
TRACE("euf_verbose", tout << "explain-eq: " << bpp(a) << " == " << bpp(b) << " lca: " << bpp(lca) << "\n";);
push_to_lca(a, lca);
push_to_lca(b, lca);
if (m_used_eq)
m_used_eq(a->get_expr(), b->get_expr(), lca->get_expr());
explain_todo(justifications);
}
template <typename T>
void egraph::explain_todo(ptr_vector<T>& justifications) {
for (unsigned i = 0; i < m_todo.size(); ++i) {
enode* n = m_todo[i];
if (n->m_target && !n->is_marked1()) {
n->mark1();
CTRACE("euf", m_display_justification, n->m_justification.display(tout << n->get_expr_id() << " = " << n->m_target->get_expr_id() << " ", m_display_justification) << "\n";);
explain_eq(justifications, n, n->m_target, n->m_justification);
}
}
}
void egraph::invariant() {
for (enode* n : m_nodes)
n->invariant(*this);
for (enode* n : m_nodes)
if (n->merge_enabled() && n->num_args() > 0 && (!m_table.find(n) || n->get_root() != m_table.find(n)->get_root())) {
CTRACE("euf", !m_table.find(n), tout << "node is not in table\n";);
CTRACE("euf", m_table.find(n), tout << "root " << bpp(n->get_root()) << " table root " << bpp(m_table.find(n)->get_root()) << "\n";);
TRACE("euf", display(tout << bpp(n) << " is not closed under congruence\n"););
UNREACHABLE();
}
}
std::ostream& egraph::display(std::ostream& out, unsigned max_args, enode* n) const {
out << n->get_expr_id() << " := ";
expr* f = n->get_expr();
if (is_app(f))
out << mk_bounded_pp(f, m, 1) << " ";
else if (is_quantifier(f))
out << "q:" << f->get_id() << " ";
else
out << "v:" << f->get_id() << " ";
if (!n->is_root())
out << "[r " << n->get_root()->get_expr_id() << "] ";
if (!n->m_parents.empty()) {
out << "[p";
for (enode* p : enode_parents(n))
out << " " << p->get_expr_id();
out << "] ";
}
if (n->has_th_vars()) {
out << "[t";
for (auto v : enode_th_vars(n))
out << " " << v.get_id() << ":" << v.get_var();
out << "] ";
}
if (n->m_target && m_display_justification)
n->m_justification.display(out << "[j " << n->m_target->get_expr_id() << " ", m_display_justification) << "] ";
out << "\n";
return out;
}
std::ostream& egraph::display(std::ostream& out) const {
out << "updates " << m_updates.size() << "\n";
out << "newlits " << m_new_lits.size() << " qhead: " << m_new_lits_qhead << "\n";
out << "neweqs " << m_new_th_eqs.size() << " qhead: " << m_new_th_eqs_qhead << "\n";
m_table.display(out);
unsigned max_args = 0;
for (enode* n : m_nodes)
max_args = std::max(max_args, n->num_args());
for (enode* n : m_nodes)
display(out, max_args, n);
return out;
}
void egraph::collect_statistics(statistics& st) const {
st.update("euf merge", m_stats.m_num_merge);
st.update("euf conflicts", m_stats.m_num_conflicts);
st.update("euf propagations eqs", m_stats.m_num_eqs);
st.update("euf propagations theory eqs", m_stats.m_num_th_eqs);
st.update("euf propagations theory diseqs", m_stats.m_num_th_diseqs);
st.update("euf propagations literal", m_stats.m_num_lits);
}
void egraph::copy_from(egraph const& src, std::function<void*(void*)>& copy_justification) {
SASSERT(m_scopes.empty());
SASSERT(src.m_scopes.empty());
SASSERT(m_nodes.empty());
ptr_vector<enode> old_expr2new_enode, args;
ast_translation tr(src.m, m);
for (unsigned i = 0; i < src.m_nodes.size(); ++i) {
enode* n1 = src.m_nodes[i];
expr* e1 = src.m_exprs[i];
args.reset();
for (unsigned j = 0; j < n1->num_args(); ++j)
args.push_back(old_expr2new_enode[n1->get_arg(j)->get_expr_id()]);
expr* e2 = tr(e1);
enode* n2 = mk(e2, args.size(), args.c_ptr());
old_expr2new_enode.setx(e1->get_id(), n2, nullptr);
n2->set_value(n2->value());
n2->m_bool_var = n1->m_bool_var;
}
for (unsigned i = 0; i < src.m_nodes.size(); ++i) {
enode* n1 = src.m_nodes[i];
enode* n1t = n1->m_target;
enode* n2 = m_nodes[i];
enode* n2t = n1t ? old_expr2new_enode[n1->get_expr_id()] : nullptr;
SASSERT(!n1t || n2t);
SASSERT(!n1t || src.m.get_sort(n1->get_expr()) == src.m.get_sort(n1t->get_expr()));
SASSERT(!n1t || m.get_sort(n2->get_expr()) == m.get_sort(n2t->get_expr()));
if (n1t && n2->get_root() != n2t->get_root())
merge(n2, n2t, n1->m_justification.copy(copy_justification));
}
propagate();
}
}
template void euf::egraph::explain(ptr_vector<int>& justifications);
template void euf::egraph::explain_todo(ptr_vector<int>& justifications);
template void euf::egraph::explain_eq(ptr_vector<int>& justifications, enode* a, enode* b);
template void euf::egraph::explain(ptr_vector<size_t>& justifications);
template void euf::egraph::explain_todo(ptr_vector<size_t>& justifications);
template void euf::egraph::explain_eq(ptr_vector<size_t>& justifications, enode* a, enode* b);