3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-16 05:48:44 +00:00
z3/src/smt/seq_axioms.h
Nikolaj Bjorner 34cc60410f additional str/re operators, remove encoding option from zstring
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2020-05-17 05:08:36 -07:00

105 lines
3.8 KiB
C++

/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
seq_axioms.h
Abstract:
Axiomatize string operations that can be reduced to
more basic operations.
Author:
Nikolaj Bjorner (nbjorner) 2020-4-16
Revision History:
--*/
#pragma once
#include "ast/seq_decl_plugin.h"
#include "ast/arith_decl_plugin.h"
#include "ast/rewriter/th_rewriter.h"
#include "smt/smt_theory.h"
#include "smt/seq_skolem.h"
namespace smt {
class seq_axioms {
theory& th;
th_rewriter& m_rewrite;
ast_manager& m;
arith_util a;
seq_util seq;
seq_skolem m_sk;
bool m_digits_initialized;
literal mk_eq_empty(expr* e, bool phase = true) { return mk_eq_empty2(e, phase); }
context& ctx() { return th.get_context(); }
literal mk_eq(expr* a, expr* b);
literal mk_literal(expr* e);
literal mk_seq_eq(expr* a, expr* b) { SASSERT(seq.is_seq(a) && seq.is_seq(b)); return mk_literal(m_sk.mk_eq(a, b)); }
expr_ref mk_len(expr* s);
expr_ref mk_sub(expr* x, expr* y);
expr_ref mk_concat(expr* e1, expr* e2, expr* e3) { return expr_ref(seq.str.mk_concat(e1, e2, e3), m); }
expr_ref mk_concat(expr* e1, expr* e2) { return expr_ref(seq.str.mk_concat(e1, e2), m); }
expr_ref mk_nth(expr* e, unsigned i) { return expr_ref(seq.str.mk_nth_i(e, a.mk_int(i)), m); }
literal mk_ge_e(expr* x, expr* y) { return mk_literal(a.mk_ge(x, y)); }
literal mk_le_e(expr* x, expr* y) { return mk_literal(a.mk_le(x, y)); }
void add_axiom(literal l1, literal l2 = null_literal, literal l3 = null_literal,
literal l4 = null_literal, literal l5 = null_literal) { add_axiom5(l1, l2, l3, l4, l5); }
void add_tail_axiom(expr* e, expr* s);
void add_drop_last_axiom(expr* e, expr* s);
bool is_drop_last(expr* s, expr* i, expr* l);
bool is_tail(expr* s, expr* i, expr* l);
bool is_extract_prefix0(expr* s, expr* i, expr* l);
bool is_extract_suffix(expr* s, expr* i, expr* l);
void add_extract_prefix_axiom(expr* e, expr* s, expr* l);
void add_extract_suffix_axiom(expr* e, expr* s, expr* i);
void tightest_prefix(expr* s, expr* x);
void ensure_digit_axiom();
public:
seq_axioms(theory& th, th_rewriter& r);
// we rely on client to supply the following functions:
std::function<void(literal l1, literal l2, literal l3, literal l4, literal l5)> add_axiom5;
std::function<literal(expr*,bool)> mk_eq_empty2;
void add_suffix_axiom(expr* n);
void add_prefix_axiom(expr* n);
void add_extract_axiom(expr* n);
void add_indexof_axiom(expr* n);
void add_last_indexof_axiom(expr* n);
void add_replace_axiom(expr* n);
void add_at_axiom(expr* n);
void add_nth_axiom(expr* n);
void add_itos_axiom(expr* n);
void add_stoi_axiom(expr* n);
void add_stoi_axiom(expr* e, unsigned k);
void add_itos_axiom(expr* s, unsigned k);
void add_lt_axiom(expr* n);
void add_le_axiom(expr* n);
void add_is_digit_axiom(expr* n);
void add_str_to_code_axiom(expr* n);
void add_str_from_code_axiom(expr* n);
void add_unit_axiom(expr* n);
void add_length_axiom(expr* n);
void unroll_not_contains(expr* n);
literal is_digit(expr* ch);
literal mk_ge(expr* e, int k) { return mk_ge_e(e, a.mk_int(k)); }
literal mk_le(expr* e, int k) { return mk_le_e(e, a.mk_int(k)); }
literal mk_ge(expr* e, rational const& k) { return mk_ge_e(e, a.mk_int(k)); }
literal mk_le(expr* e, rational const& k) { return mk_le_e(e, a.mk_int(k)); }
expr_ref add_length_limit(expr* s, unsigned k);
};
};