3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-08-03 09:50:23 +00:00
z3/src/ast/rewriter/poly_rewriter.h
Nikolaj Bjorner e2f5c1f7c8 delay load specrels
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2020-01-10 12:18:56 -08:00

182 lines
6.4 KiB
C++

/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
poly_rewriter.h
Abstract:
Basic rewriting rules for Polynomials.
Author:
Leonardo (leonardo) 2011-04-08
Notes:
--*/
#ifndef POLY_REWRITER_H_
#define POLY_REWRITER_H_
#include "ast/ast.h"
#include "util/obj_hashtable.h"
#include "ast/rewriter/rewriter_types.h"
#include "util/params.h"
template<typename Config>
class poly_rewriter : public Config {
protected:
typedef typename Config::numeral numeral;
sort * m_curr_sort;
obj_map<expr, unsigned> m_expr2pos;
bool m_flat;
bool m_som;
unsigned m_som_blowup;
bool m_sort_sums;
bool m_hoist_mul;
bool m_hoist_cmul;
bool m_ast_order;
bool m_hoist_ite;
bool is_numeral(expr * n) const { return Config::is_numeral(n); }
bool is_numeral(expr * n, numeral & r) const { return Config::is_numeral(n, r); }
bool is_int_numeral(expr * n, numeral & r) const { return Config::is_numeral(n, r) && r.is_int(); }
bool is_minus_one(expr * n) const { return Config::is_minus_one(n); }
void normalize(numeral & c) { Config::normalize(c, m_curr_sort); }
app * mk_numeral(numeral const & r) { return Config::mk_numeral(r, m_curr_sort); }
decl_kind add_decl_kind() const { return Config::add_decl_kind(); }
decl_kind mul_decl_kind() const { return Config::mul_decl_kind(); }
bool use_power() const { return Config::use_power(); }
decl_kind power_decl_kind() const { return Config::power_decl_kind(); }
bool is_power(expr * t) const { return is_app_of(t, get_fid(), power_decl_kind()); }
expr * get_power_body(expr * t, rational & k);
expr * mk_mul_app(unsigned num_args, expr * const * args);
expr * mk_mul_app(numeral const & c, expr * arg);
expr * mk_add_app(unsigned num_args, expr * const * args);
br_status mk_flat_mul_core(unsigned num_args, expr * const * args, expr_ref & result);
br_status mk_nflat_mul_core(unsigned num_args, expr * const * args, expr_ref & result);
expr * get_power_product(expr * t);
expr * get_power_product(expr * t, numeral & a);
br_status mk_flat_add_core(unsigned num_args, expr * const * args, expr_ref & result);
br_status mk_nflat_add_core(unsigned num_args, expr * const * args, expr_ref & result);
void set_curr_sort(sort * s) { m_curr_sort = s; }
expr * const * get_monomials(expr * & t, unsigned & sz) {
if (is_add(t)) {
sz = to_app(t)->get_num_args();
return to_app(t)->get_args();
}
else {
sz = 1;
return &t;
}
}
br_status cancel_monomials(expr * lhs, expr * rhs, bool move, expr_ref & lhs_result, expr_ref & rhs_result);
bool is_nontrivial_gcd(numeral const& g) const { return !g.is_zero() && !g.is_one(); }
bool hoist_ite(expr_ref& e);
bool hoist_ite(expr* e, obj_hashtable<expr>& shared, numeral& g);
expr* apply_hoist(expr* e, numeral const& g, obj_hashtable<expr> const& shared);
bool hoist_multiplication(expr_ref& som);
expr* merge_muls(expr* x, expr* y);
struct hoist_cmul_lt;
bool is_mul(expr * t, numeral & c, expr * & pp);
void hoist_cmul(expr_ref_buffer & args);
class mon_lt {
poly_rewriter& rw;
int ordinal(expr* e) const;
public:
mon_lt(poly_rewriter& rw): rw(rw) {}
bool operator()(expr* e1, expr * e2) const;
};
public:
poly_rewriter(ast_manager & m, params_ref const & p = params_ref()):
Config(m),
m_curr_sort(nullptr),
m_sort_sums(false) {
updt_params(p);
SASSERT(!m_som || m_flat); // som of monomials form requires flattening to be enabled.
SASSERT(!m_som || !m_hoist_mul); // som is mutually exclusive with hoisting multiplication.
}
ast_manager & m() const { return Config::m(); }
family_id get_fid() const { return Config::get_fid(); }
void updt_params(params_ref const & p);
static void get_param_descrs(param_descrs & r);
void set_flat(bool f) { m_flat = f; }
void set_sort_sums(bool f) { m_sort_sums = f; }
bool is_add(expr * n) const { return is_app_of(n, get_fid(), add_decl_kind()); }
bool is_mul(expr * n) const { return is_app_of(n, get_fid(), mul_decl_kind()); }
bool is_add(func_decl * f) const { return is_decl_of(f, get_fid(), add_decl_kind()); }
bool is_mul(func_decl * f) const { return is_decl_of(f, get_fid(), mul_decl_kind()); }
bool is_times_minus_one(expr * n, expr*& r) const;
bool is_var_plus_ground(expr * n, bool & inv, var * & v, expr_ref & t);
bool is_zero(expr* e) const;
br_status mk_mul_core(unsigned num_args, expr * const * args, expr_ref & result) {
SASSERT(num_args > 0);
if (num_args == 1) {
result = args[0];
return BR_DONE;
}
set_curr_sort(m().get_sort(args[0]));
return m_flat ?
mk_flat_mul_core(num_args, args, result) :
mk_nflat_mul_core(num_args, args, result);
}
br_status mk_add_core(unsigned num_args, expr * const * args, expr_ref & result) {
SASSERT(num_args > 0);
if (num_args == 1) {
result = args[0];
return BR_DONE;
}
set_curr_sort(m().get_sort(args[0]));
return m_flat ?
mk_flat_add_core(num_args, args, result) :
mk_nflat_add_core(num_args, args, result);
}
void mk_add(unsigned num_args, expr * const * args, expr_ref & result) {
if (mk_add_core(num_args, args, result) == BR_FAILED)
result = mk_add_app(num_args, args);
}
void mk_add(expr* a1, expr* a2, expr_ref& result) {
expr* args[2] = { a1, a2 };
mk_add(2, args, result);
}
void mk_mul(unsigned num_args, expr * const * args, expr_ref & result) {
if (mk_mul_core(num_args, args, result) == BR_FAILED)
result = mk_mul_app(num_args, args);
}
void mk_mul(expr* a1, expr* a2, expr_ref& result) {
expr* args[2] = { a1, a2 };
mk_mul(2, args, result);
}
// The result of the following functions is never BR_FAILED
br_status mk_uminus(expr * arg, expr_ref & result);
br_status mk_sub(unsigned num_args, expr * const * args, expr_ref & result);
void mk_sub(expr* a1, expr* a2, expr_ref& result) {
expr* args[2] = { a1, a2 };
mk_sub(2, args, result);
}
};
#endif