3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-15 05:18:44 +00:00
z3/src/interp/iz3proof_itp.h
Alberto Griggio 8e772b428b use a base iz3_exception class for exceptions raised during interpolation
Using a base exception class, derived from z3_exception, makes it possible to
recover gracefully if something goes wrong during the computation of
interpolants.
2015-04-16 19:14:34 +02:00

144 lines
4.5 KiB
C++

/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
iz3proof.h
Abstract:
This class defines a simple interpolating proof system.
Author:
Ken McMillan (kenmcmil)
Revision History:
--*/
#ifndef IZ3PROOF_ITP_H
#define IZ3PROOF_ITP_H
#include <set>
#include "iz3base.h"
#include "iz3secondary.h"
// #define CHECK_PROOFS
/** This class defines a simple proof system.
As opposed to iz3proof, this class directly computes interpolants,
so the proof representation is just the interpolant itself.
*/
class iz3proof_itp : public iz3mgr {
public:
/** Enumeration of proof rules. */
enum rule {Resolution,Assumption,Hypothesis,Theory,Axiom,Contra,Lemma,Reflexivity,Symmetry,Transitivity,Congruence,EqContra};
/** Interface to prover. */
typedef iz3base prover;
/** Ast type. */
typedef prover::ast ast;
/** The type of proof nodes (just interpolants). */
typedef ast node;
/** Object thrown in case of a proof error. */
struct proof_error: public iz3_exception {
proof_error(): iz3_exception("proof_error") {}
};
/** Make a resolution node with given pivot literal and premises.
The conclusion of premise1 should contain the negation of the
pivot literal, while the conclusion of premise2 should containe the
pivot literal.
*/
virtual node make_resolution(ast pivot, const std::vector<ast> &conc, node premise1, node premise2) = 0;
/** Make an assumption node. The given clause is assumed in the given frame. */
virtual node make_assumption(int frame, const std::vector<ast> &assumption) = 0;
/** Make a hypothesis node. If phi is the hypothesis, this is
effectively phi |- phi. */
virtual node make_hypothesis(const ast &hypothesis) = 0;
/** Make an axiom node. The conclusion must be an instance of an axiom. */
virtual node make_axiom(const std::vector<ast> &conclusion) = 0;
/** Make an axiom node. The conclusion must be an instance of an axiom. Localize axiom instance to range*/
virtual node make_axiom(const std::vector<ast> &conclusion, prover::range) = 0;
/** Make a Contra node. This rule takes a derivation of the form
Gamma |- False and produces |- \/~Gamma. */
virtual node make_contra(node prem, const std::vector<ast> &conclusion) = 0;
/** Make a Reflexivity node. This rule produces |- x = x */
virtual node make_reflexivity(ast con) = 0;
/** Make a Symmetry node. This takes a derivation of |- x = y and
produces | y = x */
virtual node make_symmetry(ast con, const ast &premcon, node prem) = 0;
/** Make a transitivity node. This takes derivations of |- x = y
and |- y = z produces | x = z */
virtual node make_transitivity(const ast &x, const ast &y, const ast &z, node prem1, node prem2) = 0;
/** Make a congruence node. This takes a derivation of |- x_i = y_i
and produces |- f(...x_i,...) = f(...,y_i,...) */
virtual node make_congruence(const ast &xi_eq_yi, const ast &con, const ast &prem1) = 0;
/** Make a congruence node. This takes derivations of |- x_i1 = y_i1, |- x_i2 = y_i2,...
and produces |- f(...x_i1...x_i2...) = f(...y_i1...y_i2...) */
virtual node make_congruence(const std::vector<ast> &xi_eq_yi, const ast &con, const std::vector<ast> &prems) = 0;
/** Make a modus-ponens node. This takes derivations of |- x
and |- x = y and produces |- y */
virtual node make_mp(const ast &x_eq_y, const ast &prem1, const ast &prem2) = 0;
/** Make a farkas proof node. */
virtual node make_farkas(ast con, const std::vector<node> &prems, const std::vector<ast> &prem_cons, const std::vector<ast> &coeffs) = 0;
/* Make an axiom instance of the form |- x<=y, y<= x -> x =y */
virtual node make_leq2eq(ast x, ast y, const ast &xleqy, const ast &yleqx) = 0;
/* Make an axiom instance of the form |- x = y -> x <= y */
virtual node make_eq2leq(ast x, ast y, const ast &xeqy) = 0;
/* Make an inference of the form t <= c |- t/d <= floor(c/d) where t
is an affine term divisble by d and c is an integer constant */
virtual node make_cut_rule(const ast &tleqc, const ast &d, const ast &con, const ast &prem) = 0;
/* Return an interpolant from a proof of false */
virtual ast interpolate(const node &pf) = 0;
/** Create proof object to construct an interpolant. */
static iz3proof_itp *create(prover *p, const prover::range &r, bool _weak);
protected:
iz3proof_itp(iz3mgr &m)
: iz3mgr(m)
{
}
public:
virtual ~iz3proof_itp(){
}
};
#endif