3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-29 03:45:51 +00:00
z3/src/sat/smt/user_solver.cpp
Nikolaj Bjorner a0892c6669 rename antecedent utilities for clarity
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2023-07-22 11:30:34 -07:00

323 lines
10 KiB
C++

/*++
Copyright (c) 2020 Microsoft Corporation
Module Name:
user_solver.cpp
Abstract:
User propagator plugin.
Author:
Nikolaj Bjorner (nbjorner) 2020-09-23
--*/
#include "sat/smt/bv_solver.h"
#include "sat/smt/euf_solver.h"
#include "sat/smt/user_solver.h"
namespace user_solver {
solver::solver(euf::solver& ctx) :
th_euf_solver(ctx, symbol(user_propagator::plugin::name()), ctx.get_manager().mk_family_id(user_propagator::plugin::name()))
{}
solver::~solver() {
dealloc(m_api_context);
}
void solver::add_expr(expr* e) {
force_push();
ctx.internalize(e);
euf::enode* n = expr2enode(e);
if (is_attached_to_var(n))
return;
euf::theory_var v = mk_var(n);
ctx.attach_th_var(n, this, v);
expr_ref r(m);
sat::literal_vector explain;
if (ctx.is_fixed(n, r, explain))
m_prop.push_back(prop_info(explain, v, r));
}
bool solver::propagate_cb(
unsigned num_fixed, expr* const* fixed_ids,
unsigned num_eqs, expr* const* eq_lhs, expr* const* eq_rhs,
expr* conseq) {
auto* n = ctx.get_enode(conseq);
if (n && s().value(ctx.enode2literal(n)) == l_true)
return false;
m_fixed_ids.reset();
for (unsigned i = 0; i < num_fixed; ++i)
m_fixed_ids.push_back(get_th_var(fixed_ids[i]));
m_prop.push_back(prop_info(num_fixed, m_fixed_ids.data(), num_eqs, eq_lhs, eq_rhs, expr_ref(conseq, m)));
DEBUG_CODE(validate_propagation(););
return true;
}
void solver::register_cb(expr* e) {
add_expr(e);
}
bool solver::next_split_cb(expr* e, unsigned idx, lbool phase) {
if (e == nullptr) {
m_next_split_var = sat::null_bool_var;
return true;
}
force_push();
ctx.internalize(e);
sat::bool_var var = enode_to_bool(ctx.get_enode(e), idx);
m_next_split_phase = phase;
if (var == sat::null_bool_var || s().value(var) != l_undef)
return false;
m_next_split_var = var;
m_next_split_phase = phase;
return true;
}
sat::check_result solver::check() {
if (!(bool)m_final_eh)
return sat::check_result::CR_DONE;
unsigned sz = m_prop.size();
m_final_eh(m_user_context, this);
return sz == m_prop.size() ? sat::check_result::CR_DONE : sat::check_result::CR_CONTINUE;
}
void solver::new_fixed_eh(euf::theory_var v, expr* value, unsigned num_lits, sat::literal const* jlits) {
if (!m_fixed_eh)
return;
force_push();
m_id2justification.setx(v, sat::literal_vector(num_lits, jlits), sat::literal_vector());
m_fixed_eh(m_user_context, this, var2expr(v), value);
}
bool solver::decide(sat::bool_var& var, lbool& phase) {
if (!m_decide_eh)
return false;
euf::enode* original_enode = bool_var2enode(var);
if (!original_enode || !is_attached_to_var(original_enode))
return false;
unsigned new_bit = 0; // ignored; currently no bv-support
expr* e = original_enode->get_expr();
m_decide_eh(m_user_context, this, e, new_bit, phase);
sat::bool_var new_var;
if (!get_case_split(new_var, phase) || new_var == var)
// The user did not interfere
return false;
var = new_var;
// check if the new variable is unassigned
if (s().value(var) != l_undef)
throw default_exception("expression in \"decide\" is already assigned");
return true;
}
bool solver::get_case_split(sat::bool_var& var, lbool& phase) {
if (m_next_split_var == sat::null_bool_var)
return false;
var = m_next_split_var;
phase = m_next_split_phase;
m_next_split_var = sat::null_bool_var;
m_next_split_phase = l_undef;
return true;
}
void solver::asserted(sat::literal lit) {
if (!m_fixed_eh)
return;
auto* n = bool_var2enode(lit.var());
euf::theory_var v = n->get_th_var(get_id());
if (!m_id2justification.get(v, sat::literal_vector()).empty())
// the core merged variables. We already issued the respective fixed callback for an equated variable
return;
force_push();
sat::literal_vector lits;
lits.push_back(lit);
m_id2justification.setx(v, lits, sat::literal_vector());
m_fixed_eh(m_user_context, this, var2expr(v), lit.sign() ? m.mk_false() : m.mk_true());
}
void solver::new_eq_eh(euf::th_eq const& eq) {
if (!m_eq_eh)
return;
force_push();
m_eq_eh(m_user_context, this, var2expr(eq.v1()), var2expr(eq.v2()));
}
void solver::new_diseq_eh(euf::th_eq const& de) {
if (!m_diseq_eh)
return;
force_push();
m_diseq_eh(m_user_context, this, var2expr(de.v1()), var2expr(de.v2()));
}
void solver::push_core() {
th_euf_solver::push_core();
m_prop_lim.push_back(m_prop.size());
m_push_eh(m_user_context, this);
}
void solver::pop_core(unsigned num_scopes) {
th_euf_solver::pop_core(num_scopes);
unsigned old_sz = m_prop_lim.size() - num_scopes;
m_prop.shrink(m_prop_lim[old_sz]);
m_prop_lim.shrink(old_sz);
m_pop_eh(m_user_context, this, num_scopes);
}
void solver::propagate_consequence(prop_info const& prop) {
sat::literal lit = ctx.internalize(prop.m_conseq, false, false);
if (s().value(lit) != l_true) {
s().assign(lit, mk_justification(m_qhead));
++m_stats.m_num_propagations;
}
}
void solver::propagate_new_fixed(prop_info const& prop) {
new_fixed_eh(prop.m_var, prop.m_conseq, prop.m_lits.size(), prop.m_lits.data());
}
bool solver::unit_propagate() {
if (m_qhead == m_prop.size())
return false;
force_push();
ctx.push(value_trail<unsigned>(m_qhead));
unsigned np = m_stats.m_num_propagations;
for (; m_qhead < m_prop.size() && !s().inconsistent(); ++m_qhead) {
auto const& prop = m_prop[m_qhead];
if (prop.m_var == euf::null_theory_var)
propagate_consequence(prop);
else
propagate_new_fixed(prop);
}
return np < m_stats.m_num_propagations;
}
void solver::collect_statistics(::statistics& st) const {
st.update("user-propagations", m_stats.m_num_propagations);
st.update("user-watched", get_num_vars());
}
sat::justification solver::mk_justification(unsigned prop_idx) {
void* mem = get_region().allocate(justification::get_obj_size());
sat::constraint_base::initialize(mem, this);
auto* constraint = new (sat::constraint_base::ptr2mem(mem)) justification(prop_idx);
return sat::justification::mk_ext_justification(s().scope_lvl(), constraint->to_index());
}
void solver::get_antecedents(sat::literal l, sat::ext_justification_idx idx, sat::literal_vector & r, bool probing) {
auto& j = justification::from_index(idx);
auto const& prop = m_prop[j.m_propagation_index];
for (unsigned id : prop.m_ids)
r.append(m_id2justification[id]);
for (auto const& p : prop.m_eqs)
ctx.add_eq_antecedent(probing, expr2enode(p.first), expr2enode(p.second));
}
/*
* All assumptions and equalities have to be true in the current scope.
* A caller could mistakingly supply some assumption that isn't set.
*/
void solver::validate_propagation() {
auto const& prop = m_prop.back();
for (unsigned id : prop.m_ids)
for (auto lit: m_id2justification[id])
VERIFY(s().value(lit) == l_true);
for (auto const& p : prop.m_eqs)
VERIFY(expr2enode(p.first)->get_root() == expr2enode(p.second)->get_root());
}
std::ostream& solver::display(std::ostream& out) const {
for (unsigned i = 0; i < get_num_vars(); ++i)
out << i << ": " << mk_pp(var2expr(i), m) << "\n";
return out;
}
std::ostream& solver::display_justification(std::ostream& out, sat::ext_justification_idx idx) const {
auto& j = justification::from_index(idx);
auto const& prop = m_prop[j.m_propagation_index];
for (unsigned id : prop.m_ids)
out << id << ": " << m_id2justification[id];
for (auto const& p : prop.m_eqs)
out << "v" << mk_pp(p.first, m) << " == v" << mk_pp(p.second, m) << " ";
return out;
}
std::ostream& solver::display_constraint(std::ostream& out, sat::ext_constraint_idx idx) const {
return display_justification(out, idx);
}
euf::th_solver* solver::clone(euf::solver& dst_ctx) {
auto* result = alloc(solver, dst_ctx);
for (unsigned i = 0; i < get_num_vars(); ++i)
result->add_expr(ctx.copy(dst_ctx, var2enode(i))->get_expr());
return result;
}
sat::literal solver::internalize(expr* e, bool sign, bool root) {
if (!visit_rec(m, e, sign, root)) {
TRACE("array", tout << mk_pp(e, m) << "\n";);
return sat::null_literal;
}
sat::literal lit = ctx.expr2literal(e);
if (sign)
lit.neg();
if (root)
add_unit(lit);
return lit;
}
void solver::internalize(expr* e) {
visit_rec(m, e, false, false);
}
bool solver::visit(expr* e) {
if (visited(e))
return true;
if (!is_app(e) || to_app(e)->get_family_id() != get_id()) {
ctx.internalize(e);
return true;
}
m_stack.push_back(sat::eframe(e));
return false;
}
bool solver::visited(expr* e) {
euf::enode* n = expr2enode(e);
return n && n->is_attached_to(get_id());
}
bool solver::post_visit(expr* e, bool sign, bool root) {
euf::enode* n = expr2enode(e);
SASSERT(!n || !n->is_attached_to(get_id()));
if (!n)
n = mk_enode(e, false);
add_expr(e);
if (m_created_eh)
m_created_eh(m_user_context, this, e);
return true;
}
sat::bool_var solver::enode_to_bool(euf::enode* n, unsigned idx) {
if (n->bool_var() != sat::null_bool_var) {
// expression is a boolean
return n->bool_var();
}
// expression is a bit-vector
bv_util bv(m);
th_solver* th = ctx.fid2solver(bv.get_fid());
return ((bv::solver*) th)->get_bit(idx, n);
}
}