3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-29 11:55:51 +00:00
z3/src/sat/smt/polysat_solver.h
2023-12-16 16:21:01 -08:00

199 lines
8.8 KiB
C++

/*++
Copyright (c) 2020 Microsoft Corporation
Module Name:
polysat_solver.h
Abstract:
Theory plugin for bit-vectors
Author:
Nikolaj Bjorner (nbjorner) 2020-08-30
--*/
#pragma once
#include "sat/smt/sat_th.h"
#include "math/dd/dd_pdd.h"
#include "sat/smt/polysat/core.h"
#include "sat/smt/intblast_solver.h"
namespace euf {
class solver;
}
namespace polysat {
class solver : public euf::th_euf_solver, public solver_interface {
typedef euf::theory_var theory_var;
typedef euf::theory_id theory_id;
typedef sat::literal literal;
typedef sat::bool_var bool_var;
typedef sat::literal_vector literal_vector;
using pdd = dd::pdd;
struct stats {
void reset() { memset(this, 0, sizeof(stats)); }
stats() { reset(); }
};
struct atom {
bool_var m_bv;
unsigned m_index;
atom(bool_var b, unsigned index) :m_bv(b), m_index(index) {}
~atom() { }
};
class polysat_proof : public euf::th_proof_hint {
public:
~polysat_proof() override {}
expr* get_hint(euf::solver& s) const override { return nullptr; }
};
bv_util bv;
arith_util m_autil;
stats m_stats;
core m_core;
intblast::solver m_intblast;
bool m_use_intblast_model = false;
vector<pdd> m_var2pdd; // theory_var 2 pdd
bool_vector m_var2pdd_valid; // valid flag
unsigned_vector m_pddvar2var; // pvar -> theory_var
ptr_vector<atom> m_bool_var2atom; // bool_var -> atom
svector<std::pair<euf::theory_var, euf::theory_var>> m_var_eqs;
unsigned m_var_eqs_head = 0;
bool m_has_lemma = false;
unsigned m_lemma_level = 0;
expr_ref_vector m_lemma;
// internalize
bool visit(expr* e) override;
bool visited(expr* e) override;
bool post_visit(expr* e, bool sign, bool root) override;
unsigned get_bv_size(euf::enode* n);
unsigned get_bv_size(theory_var v);
theory_var get_var(euf::enode* n);
void fixed_var_eh(theory_var v);
bool is_fixed(euf::theory_var v, expr_ref& val, sat::literal_vector& lits) override { return false; }
bool is_bv(theory_var v) const { return bv.is_bv(var2expr(v)); }
void register_true_false_bit(theory_var v, unsigned i);
void add_bit(theory_var v, sat::literal lit);
void eq_internalized(sat::bool_var b1, sat::bool_var b2, unsigned idx, theory_var v1, theory_var v2, sat::literal eq, euf::enode* n);
void insert_bv2a(bool_var bv, atom* a) { m_bool_var2atom.setx(bv, a, nullptr); }
void erase_bv2a(bool_var bv) { m_bool_var2atom[bv] = nullptr; }
atom* get_bv2a(bool_var bv) const { return m_bool_var2atom.get(bv, nullptr); }
class mk_atom_trail;
void mk_atom(sat::bool_var bv, signed_constraint& sc);
void set_bit_eh(theory_var v, literal l, unsigned idx);
void init_bits(expr* e, expr_ref_vector const & bits);
void mk_bits(theory_var v);
void add_def(sat::literal def, sat::literal l);
void internalize_unary(app* e, std::function<pdd(pdd)> const& fn);
void internalize_binary(app* e, std::function<pdd(pdd, pdd)> const& fn);
void internalize_binaryc(app* e, std::function<signed_constraint(pdd, pdd)> const& fn);
void internalize_par_unary(app* e, std::function<pdd(pdd,unsigned)> const& fn);
void internalize_novfl(app* n, std::function<void(unsigned, expr* const*, expr* const*, expr_ref&)>& fn);
void internalize_interp(app* n, std::function<expr*(expr*, expr*)>& ibin, std::function<expr*(expr*)>& un);
void internalize_num(app * n);
void internalize_concat(app * n);
void internalize_bv2int(app* n);
void internalize_int2bv(app* n);
void internalize_mkbv(app* n);
void internalize_xor3(app* n);
void internalize_carry(app* n);
void internalize_sub(app* n);
void internalize_extract(app* n);
void internalize_repeat(app* n);
void internalize_bit2bool(app* n);
template<bool Signed, bool Reverse, bool Negated>
void internalize_le(app* n);
void internalize_zero_extend(app* n);
void internalize_sign_extend(app* n);
void internalize_udiv_i(app* e);
void internalize_urem_i(app* e);
void internalize_div_rem(app* e, bool is_div);
void internalize_polysat(app* a);
void assert_bv2int_axiom(app * n);
void assert_int2bv_axiom(app* n);
pdd expr2pdd(expr* e);
pdd var2pdd(euf::theory_var v);
void internalize_set(expr* e, pdd const& p);
void internalize_set(euf::theory_var v, pdd const& p);
void quot_rem(expr* quot, expr* rem, expr* x, expr* y);
// callbacks from core
void add_eq_literal(pvar v, rational const& val) override;
void set_conflict(dependency_vector const& core) override;
void set_lemma(core_vector const& aux_core, unsigned level, dependency_vector const& core) override;
dependency propagate(signed_constraint sc, dependency_vector const& deps) override;
void propagate(dependency const& d, bool sign, dependency_vector const& deps) override;
trail_stack& trail() override;
bool inconsistent() const override;
void get_bitvector_prefixes(pvar v, pvar_vector& out) override;
void get_fixed_bits(pvar v, svector<justified_fixed_bits>& fixed_bits) override;
void add_polysat_clause(char const* name, std::initializer_list<signed_constraint> cs, bool is_redundant);
std::pair<sat::literal_vector, euf::enode_pair_vector> explain_deps(dependency_vector const& deps);
expr_ref constraint2expr(signed_constraint const& sc);
expr_ref pdd2expr(pdd const& p);
public:
solver(euf::solver& ctx, theory_id id);
~solver() override {}
void set_lookahead(sat::lookahead* s) override { }
void init_search() override {}
double get_reward(literal l, sat::ext_constraint_idx idx, sat::literal_occs_fun& occs) const override { return 0; }
bool is_extended_binary(sat::ext_justification_idx idx, literal_vector& r) override { return false; }
bool is_external(bool_var v) override { return false; }
void get_antecedents(literal l, sat::ext_justification_idx idx, literal_vector & r, bool probing) override;
void asserted(literal l) override;
sat::check_result check() override;
void simplify() override {}
void clauses_modifed() override {}
lbool get_phase(bool_var v) override { return l_undef; }
std::ostream& display(std::ostream& out) const override;
std::ostream& display_justification(std::ostream& out, sat::ext_justification_idx idx) const override;
std::ostream& display_constraint(std::ostream& out, sat::ext_constraint_idx idx) const override;
void collect_statistics(statistics& st) const override {}
euf::th_solver* clone(euf::solver& ctx) override { throw default_exception("nyi"); }
extension* copy(sat::solver* s) override { throw default_exception("nyi"); }
void find_mutexes(literal_vector& lits, vector<literal_vector> & mutexes) override {}
void gc() override {}
void pop_reinit() override {}
lbool resolve_conflict() override;
bool validate() override { return true; }
void init_use_list(sat::ext_use_list& ul) override {}
bool is_blocked(literal l, sat::ext_constraint_idx) override { return false; }
bool check_model(sat::model const& m) const override;
void finalize_model(model& mdl) override;
void new_eq_eh(euf::th_eq const& eq) override;
void new_diseq_eh(euf::th_eq const& ne) override;
bool use_diseqs() const override { return true; }
bool unit_propagate() override;
void add_value(euf::enode* n, model& mdl, expr_ref_vector& values) override;
bool extract_pb(std::function<void(unsigned sz, literal const* c, unsigned k)>& card,
std::function<void(unsigned sz, literal const* c, unsigned const* coeffs, unsigned k)>& pb) override { return false; }
bool to_formulas(std::function<expr_ref(sat::literal)>& l2e, expr_ref_vector& fmls) override { return false; }
sat::literal internalize(expr* e, bool sign, bool root) override;
void internalize(expr* e) override;
void eq_internalized(euf::enode* n) override;
euf::theory_var mk_var(euf::enode* n) override;
void apply_sort_cnstr(euf::enode * n, sort * s) override;
};
}