3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-29 03:45:51 +00:00
z3/src/duality/duality_wrapper.h
Nikolaj Bjorner baee4225a7 reworking cancellation
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2015-12-11 16:21:24 -08:00

1490 lines
54 KiB
C++

/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
duality_wrapper.h
Abstract:
wrap various Z3 classes in the style expected by duality
Author:
Ken McMillan (kenmcmil)
Revision History:
--*/
#ifndef DUALITY_WRAPPER_H_
#define DUALITY_WRAPPER_H_
#include<cassert>
#include<iostream>
#include<string>
#include<sstream>
#include<vector>
#include<list>
#include <set>
#include"version.h"
#include<limits.h>
#include "iz3hash.h"
#include "model.h"
#include "solver.h"
#include"well_sorted.h"
#include"arith_decl_plugin.h"
#include"bv_decl_plugin.h"
#include"datatype_decl_plugin.h"
#include"array_decl_plugin.h"
#include"ast_translation.h"
#include"ast_pp.h"
#include"ast_ll_pp.h"
#include"ast_smt_pp.h"
#include"ast_smt2_pp.h"
#include"th_rewriter.h"
#include"var_subst.h"
#include"expr_substitution.h"
#include"pp.h"
#include"scoped_ctrl_c.h"
#include"cancel_eh.h"
#include"scoped_timer.h"
#include"scoped_proof.h"
namespace Duality {
class exception;
class config;
class context;
class symbol;
class params;
class ast;
class sort;
class func_decl;
class expr;
class solver;
class goal;
class tactic;
class probe;
class model;
class func_interp;
class func_entry;
class statistics;
class apply_result;
class fixedpoint;
class literals;
/**
Duality global configuration object.
*/
class config {
params_ref m_params;
config & operator=(config const & s);
public:
config(config const & s) : m_params(s.m_params) {}
config(const params_ref &_params) : m_params(_params) {}
config() { } // TODO: create a new params object here
~config() { }
void set(char const * param, char const * value) { m_params.set_str(param,value); }
void set(char const * param, bool value) { m_params.set_bool(param,value); }
void set(char const * param, int value) { m_params.set_uint(param,value); }
params_ref &get() {return m_params;}
const params_ref &get() const {return m_params;}
};
enum decl_kind {
True,
False,
And,
Or,
Not,
Iff,
Ite,
Equal,
Implies,
Distinct,
Xor,
Oeq,
Interp,
Leq,
Geq,
Lt,
Gt,
Plus,
Sub,
Uminus,
Times,
Div,
Idiv,
Rem,
Mod,
Power,
ToReal,
ToInt,
IsInt,
Select,
Store,
ConstArray,
ArrayDefault,
ArrayMap,
SetUnion,
SetIntersect,
SetDifference,
SetComplement,
SetSubSet,
AsArray,
Numeral,
Forall,
Exists,
Variable,
Uninterpreted,
OtherBasic,
OtherArith,
OtherArray,
Other
};
enum sort_kind {BoolSort,IntSort,RealSort,ArraySort,UninterpretedSort,UnknownSort};
/**
A context has an ast manager global configuration options, etc.
*/
class context {
protected:
ast_manager &mgr;
config m_config;
family_id m_basic_fid;
family_id m_array_fid;
family_id m_arith_fid;
family_id m_bv_fid;
family_id m_dt_fid;
family_id m_datalog_fid;
arith_util m_arith_util;
public:
context(ast_manager &_manager, const config &_config) : mgr(_manager), m_config(_config), m_arith_util(_manager) {
m_basic_fid = m().get_basic_family_id();
m_arith_fid = m().mk_family_id("arith");
m_bv_fid = m().mk_family_id("bv");
m_array_fid = m().mk_family_id("array");
m_dt_fid = m().mk_family_id("datatype");
m_datalog_fid = m().mk_family_id("datalog_relation");
}
~context() { }
ast_manager &m() const {return *(ast_manager *)&mgr;}
void set(char const * param, char const * value) { m_config.set(param,value); }
void set(char const * param, bool value) { m_config.set(param,value); }
void set(char const * param, int value) { m_config.set(param,value); }
config &get_config() {return m_config;}
symbol str_symbol(char const * s);
symbol int_symbol(int n);
sort bool_sort();
sort int_sort();
sort real_sort();
sort bv_sort(unsigned sz);
sort array_sort(sort d, sort r);
func_decl function(symbol const & name, unsigned arity, sort const * domain, sort const & range);
func_decl function(char const * name, unsigned arity, sort const * domain, sort const & range);
func_decl function(char const * name, sort const & domain, sort const & range);
func_decl function(char const * name, sort const & d1, sort const & d2, sort const & range);
func_decl function(char const * name, sort const & d1, sort const & d2, sort const & d3, sort const & range);
func_decl function(char const * name, sort const & d1, sort const & d2, sort const & d3, sort const & d4, sort const & range);
func_decl function(char const * name, sort const & d1, sort const & d2, sort const & d3, sort const & d4, sort const & d5, sort const & range);
func_decl fresh_func_decl(char const * name, const std::vector<sort> &domain, sort const & range);
func_decl fresh_func_decl(char const * name, sort const & range);
expr constant(symbol const & name, sort const & s);
expr constant(char const * name, sort const & s);
expr constant(const std::string &name, sort const & s);
expr bool_const(char const * name);
expr int_const(char const * name);
expr real_const(char const * name);
expr bv_const(char const * name, unsigned sz);
expr bool_val(bool b);
expr int_val(int n);
expr int_val(unsigned n);
expr int_val(char const * n);
expr real_val(int n, int d);
expr real_val(int n);
expr real_val(unsigned n);
expr real_val(char const * n);
expr bv_val(int n, unsigned sz);
expr bv_val(unsigned n, unsigned sz);
expr bv_val(char const * n, unsigned sz);
expr num_val(int n, sort const & s);
expr mki(family_id fid, ::decl_kind dk, int n, ::expr **args);
expr make(decl_kind op, int n, ::expr **args);
expr make(decl_kind op, const std::vector<expr> &args);
expr make(decl_kind op);
expr make(decl_kind op, const expr &arg0);
expr make(decl_kind op, const expr &arg0, const expr &arg1);
expr make(decl_kind op, const expr &arg0, const expr &arg1, const expr &arg2);
expr make_quant(decl_kind op, const std::vector<expr> &bvs, const expr &body);
expr make_quant(decl_kind op, const std::vector<sort> &_sorts, const std::vector<symbol> &_names, const expr &body);
expr make_var(int idx, const sort &s);
decl_kind get_decl_kind(const func_decl &t);
sort_kind get_sort_kind(const sort &s);
expr translate(const expr &e);
func_decl translate(const func_decl &);
void print_expr(std::ostream &s, const ast &e);
fixedpoint mk_fixedpoint();
expr cook(::expr *a);
std::vector<expr> cook(ptr_vector< ::expr> v);
::expr *uncook(const expr &a);
};
template<typename T>
class z3array {
T * m_array;
unsigned m_size;
z3array(z3array const & s);
z3array & operator=(z3array const & s);
public:
z3array(unsigned sz):m_size(sz) { m_array = new T[sz]; }
~z3array() { delete[] m_array; }
unsigned size() const { return m_size; }
T & operator[](unsigned i) { assert(i < m_size); return m_array[i]; }
T const & operator[](unsigned i) const { assert(i < m_size); return m_array[i]; }
T const * ptr() const { return m_array; }
T * ptr() { return m_array; }
};
class object {
protected:
context * m_ctx;
public:
object(): m_ctx((context *)0) {}
object(context & c):m_ctx(&c) {}
object(object const & s):m_ctx(s.m_ctx) {}
context & ctx() const { return *m_ctx; }
friend void check_context(object const & a, object const & b) { assert(a.m_ctx == b.m_ctx); }
ast_manager &m() const {return m_ctx->m();}
};
class symbol : public object {
::symbol m_sym;
public:
symbol(context & c, ::symbol s):object(c), m_sym(s) {}
symbol(symbol const & s):object(s), m_sym(s.m_sym) {}
symbol & operator=(symbol const & s) { m_ctx = s.m_ctx; m_sym = s.m_sym; return *this; }
operator ::symbol() const {return m_sym;}
std::string str() const {
if (m_sym.is_numerical()) {
std::ostringstream buffer;
buffer << m_sym.get_num();
return buffer.str();
}
else {
return m_sym.bare_str();
}
}
friend std::ostream & operator<<(std::ostream & out, symbol const & s){
return out << s.str();
}
friend bool operator==(const symbol &x, const symbol &y){
return x.m_sym == y.m_sym;
}
};
class params : public config {};
/** Wrapper around an ast pointer */
class ast_i : public object {
protected:
::ast *_ast;
public:
::ast * const &raw() const {return _ast;}
ast_i(context & c, ::ast *a = 0) : object(c) {_ast = a;}
ast_i(){_ast = 0;}
bool eq(const ast_i &other) const {
return _ast == other._ast;
}
bool lt(const ast_i &other) const {
return _ast < other._ast;
}
friend bool operator==(const ast_i &x, const ast_i&y){
return x.eq(y);
}
friend bool operator!=(const ast_i &x, const ast_i&y){
return !x.eq(y);
}
friend bool operator<(const ast_i &x, const ast_i&y){
return x.lt(y);
}
size_t hash() const {return (size_t)_ast;}
bool null() const {return !_ast;}
};
/** Reference counting verison of above */
class ast : public ast_i {
public:
operator ::ast*() const { return raw(); }
friend bool eq(ast const & a, ast const & b) { return a.raw() == b.raw(); }
ast(context &c, ::ast *a = 0) : ast_i(c,a) {
if(_ast)
m().inc_ref(a);
}
ast() {}
ast(const ast &other) : ast_i(other) {
if(_ast)
m().inc_ref(_ast);
}
ast &operator=(const ast &other) {
if(_ast)
m().dec_ref(_ast);
_ast = other._ast;
m_ctx = other.m_ctx;
if(_ast)
m().inc_ref(_ast);
return *this;
}
~ast(){
if(_ast)
m().dec_ref(_ast);
}
void show() const;
};
class sort : public ast {
public:
sort(context & c):ast(c) {}
sort(context & c, ::sort *s):ast(c, s) {}
sort(sort const & s):ast(s) {}
operator ::sort*() const { return to_sort(raw()); }
sort & operator=(sort const & s) { return static_cast<sort&>(ast::operator=(s)); }
bool is_bool() const { return m().is_bool(*this); }
bool is_int() const { return ctx().get_sort_kind(*this) == IntSort; }
bool is_real() const { return ctx().get_sort_kind(*this) == RealSort; }
bool is_arith() const;
bool is_array() const { return ctx().get_sort_kind(*this) == ArraySort; }
bool is_datatype() const;
bool is_relation() const;
bool is_finite_domain() const;
sort array_domain() const;
sort array_range() const;
friend std::ostream & operator<<(std::ostream & out, sort const & m){
m.ctx().print_expr(out,m);
return out;
}
};
class func_decl : public ast {
public:
func_decl() : ast() {}
func_decl(context & c):ast(c) {}
func_decl(context & c, ::func_decl *n):ast(c, n) {}
func_decl(func_decl const & s):ast(s) {}
operator ::func_decl*() const { return to_func_decl(*this); }
func_decl & operator=(func_decl const & s) { return static_cast<func_decl&>(ast::operator=(s)); }
unsigned arity() const;
sort domain(unsigned i) const;
sort range() const;
symbol name() const {return symbol(ctx(),to_func_decl(raw())->get_name());}
decl_kind get_decl_kind() const;
bool is_const() const { return arity() == 0; }
expr operator()(unsigned n, expr const * args) const;
expr operator()(const std::vector<expr> &args) const;
expr operator()() const;
expr operator()(expr const & a) const;
expr operator()(int a) const;
expr operator()(expr const & a1, expr const & a2) const;
expr operator()(expr const & a1, int a2) const;
expr operator()(int a1, expr const & a2) const;
expr operator()(expr const & a1, expr const & a2, expr const & a3) const;
expr operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4) const;
expr operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4, expr const & a5) const;
func_decl get_func_decl_parameter(unsigned idx){
return func_decl(ctx(),to_func_decl(to_func_decl(raw())->get_parameters()[idx].get_ast()));
}
};
class expr : public ast {
public:
expr() : ast() {}
expr(context & c):ast(c) {}
expr(context & c, ::ast *n):ast(c, n) {}
expr(expr const & n):ast(n) {}
expr & operator=(expr const & n) { return static_cast<expr&>(ast::operator=(n)); }
operator ::expr*() const { return to_expr(raw()); }
unsigned get_id() const {return to_expr(raw())->get_id();}
sort get_sort() const { return sort(ctx(),m().get_sort(to_expr(raw()))); }
bool is_bool() const { return get_sort().is_bool(); }
bool is_int() const { return get_sort().is_int(); }
bool is_real() const { return get_sort().is_real(); }
bool is_arith() const { return get_sort().is_arith(); }
bool is_array() const { return get_sort().is_array(); }
bool is_datatype() const { return get_sort().is_datatype(); }
bool is_relation() const { return get_sort().is_relation(); }
bool is_finite_domain() const { return get_sort().is_finite_domain(); }
bool is_true() const {return is_app() && decl().get_decl_kind() == True; }
bool is_numeral() const {
return is_app() && decl().get_decl_kind() == OtherArith && m().is_unique_value(to_expr(raw()));
}
bool is_app() const {return raw()->get_kind() == AST_APP;}
bool is_quantifier() const {return raw()->get_kind() == AST_QUANTIFIER;}
bool is_var() const {return raw()->get_kind() == AST_VAR;}
bool is_label (bool &pos,std::vector<symbol> &names) const ;
bool is_ground() const {return to_app(raw())->is_ground();}
bool has_quantifiers() const {return to_app(raw())->has_quantifiers();}
bool has_free(int idx) const {
used_vars proc;
proc.process(to_expr(raw()));
return proc.contains(idx);
}
unsigned get_max_var_idx_plus_1() const {
used_vars proc;
proc.process(to_expr(raw()));
return proc.get_max_found_var_idx_plus_1();
}
// operator Z3_app() const { assert(is_app()); return reinterpret_cast<Z3_app>(m_ast); }
func_decl decl() const {return func_decl(ctx(),to_app(raw())->get_decl());}
unsigned num_args() const {
ast_kind dk = raw()->get_kind();
switch(dk){
case AST_APP:
return to_app(raw())->get_num_args();
case AST_QUANTIFIER:
return 1;
case AST_VAR:
return 0;
default:;
}
SASSERT(0);
return 0;
}
expr arg(unsigned i) const {
ast_kind dk = raw()->get_kind();
switch(dk){
case AST_APP:
return ctx().cook(to_app(raw())->get_arg(i));
case AST_QUANTIFIER:
return ctx().cook(to_quantifier(raw())->get_expr());
default:;
}
assert(0);
return expr();
}
expr body() const {
return ctx().cook(to_quantifier(raw())->get_expr());
}
friend expr operator!(expr const & a) {
// ::expr *e = a;
return expr(a.ctx(),a.m().mk_app(a.m().get_basic_family_id(),OP_NOT,a));
}
friend expr operator&&(expr const & a, expr const & b) {
return expr(a.ctx(),a.m().mk_app(a.m().get_basic_family_id(),OP_AND,a,b));
}
friend expr operator||(expr const & a, expr const & b) {
return expr(a.ctx(),a.m().mk_app(a.m().get_basic_family_id(),OP_OR,a,b));
}
friend expr implies(expr const & a, expr const & b) {
return expr(a.ctx(),a.m().mk_app(a.m().get_basic_family_id(),OP_IMPLIES,a,b));
}
friend expr operator==(expr const & a, expr const & b) {
return expr(a.ctx(),a.m().mk_app(a.m().get_basic_family_id(),OP_EQ,a,b));
}
friend expr operator!=(expr const & a, expr const & b) {
return expr(a.ctx(),a.m().mk_app(a.m().get_basic_family_id(),OP_DISTINCT,a,b));
}
friend expr operator+(expr const & a, expr const & b) {
return a.ctx().make(Plus,a,b); // expr(a.ctx(),a.m().mk_app(a.m().get_basic_family_id(),OP_ADD,a,b));
}
friend expr operator*(expr const & a, expr const & b) {
return a.ctx().make(Times,a,b); // expr(a.ctx(),a.m().mk_app(a.m().get_basic_family_id(),OP_MUL,a,b));
}
friend expr operator/(expr const & a, expr const & b) {
return a.ctx().make(Div,a,b); // expr(a.ctx(),a.m().mk_app(a.m().get_basic_family_id(),OP_DIV,a,b));
}
friend expr operator-(expr const & a) {
return a.ctx().make(Uminus,a); // expr(a.ctx(),a.m().mk_app(a.m().get_basic_family_id(),OP_UMINUS,a));
}
friend expr operator-(expr const & a, expr const & b) {
return a.ctx().make(Sub,a,b); // expr(a.ctx(),a.m().mk_app(a.ctx().m_arith_fid,OP_SUB,a,b));
}
friend expr operator<=(expr const & a, expr const & b) {
return a.ctx().make(Leq,a,b); // expr(a.ctx(),a.m().mk_app(a.m().get_basic_family_id(),OP_LE,a,b));
}
friend expr operator>=(expr const & a, expr const & b) {
return a.ctx().make(Geq,a,b); //expr(a.ctx(),a.m().mk_app(a.m().get_basic_family_id(),OP_GE,a,b));
}
friend expr operator<(expr const & a, expr const & b) {
return a.ctx().make(Lt,a,b); expr(a.ctx(),a.m().mk_app(a.m().get_basic_family_id(),OP_LT,a,b));
}
friend expr operator>(expr const & a, expr const & b) {
return a.ctx().make(Gt,a,b); expr(a.ctx(),a.m().mk_app(a.m().get_basic_family_id(),OP_GT,a,b));
}
expr simplify() const;
expr simplify(params const & p) const;
expr qe_lite() const;
expr qe_lite(const std::set<int> &idxs, bool index_of_bound) const;
friend expr clone_quantifier(const expr &, const expr &);
friend expr clone_quantifier(const expr &q, const expr &b, const std::vector<expr> &patterns);
friend expr clone_quantifier(decl_kind, const expr &, const expr &);
friend std::ostream & operator<<(std::ostream & out, expr const & m){
m.ctx().print_expr(out,m);
return out;
}
void get_patterns(std::vector<expr> &pats) const ;
unsigned get_quantifier_num_bound() const {
return to_quantifier(raw())->get_num_decls();
}
unsigned get_index_value() const {
var* va = to_var(raw());
return va->get_idx();
}
bool is_quantifier_forall() const {
return to_quantifier(raw())->is_forall();
}
sort get_quantifier_bound_sort(unsigned n) const {
return sort(ctx(),to_quantifier(raw())->get_decl_sort(n));
}
symbol get_quantifier_bound_name(unsigned n) const {
return symbol(ctx(),to_quantifier(raw())->get_decl_names()[n]);
}
friend expr forall(const std::vector<expr> &quants, const expr &body);
friend expr exists(const std::vector<expr> &quants, const expr &body);
};
typedef ::decl_kind pfrule;
class proof : public ast {
public:
proof(context & c):ast(c) {}
proof(context & c, ::proof *s):ast(c, s) {}
proof(proof const & s):ast(s) {}
operator ::proof*() const { return to_app(raw()); }
proof & operator=(proof const & s) { return static_cast<proof&>(ast::operator=(s)); }
pfrule rule() const {
::func_decl *d = to_app(raw())->get_decl();
return d->get_decl_kind();
}
unsigned num_prems() const {
return to_app(raw())->get_num_args() - 1;
}
expr conc() const {
return ctx().cook(to_app(raw())->get_arg(num_prems()));
}
proof prem(unsigned i) const {
return proof(ctx(),to_app(to_app(raw())->get_arg(i)));
}
void get_assumptions(std::vector<expr> &assumps);
};
#if 0
#if Z3_MAJOR_VERSION > 4 || Z3_MAJOR_VERSION == 4 && Z3_MINOR_VERSION >= 3
template<typename T>
class ast_vector_tpl : public object {
Z3_ast_vector m_vector;
void init(Z3_ast_vector v) { Z3_ast_vector_inc_ref(ctx(), v); m_vector = v; }
public:
ast_vector_tpl(context & c):object(c) { init(Z3_mk_ast_vector(c)); }
ast_vector_tpl(context & c, Z3_ast_vector v):object(c) { init(v); }
ast_vector_tpl(ast_vector_tpl const & s):object(s), m_vector(s.m_vector) { Z3_ast_vector_inc_ref(ctx(), m_vector); }
~ast_vector_tpl() { /* Z3_ast_vector_dec_ref(ctx(), m_vector); */ }
operator Z3_ast_vector() const { return m_vector; }
unsigned size() const { return Z3_ast_vector_size(ctx(), m_vector); }
T operator[](unsigned i) const { Z3_ast r = Z3_ast_vector_get(ctx(), m_vector, i); check_error(); return cast_ast<T>()(ctx(), r); }
void push_back(T const & e) { Z3_ast_vector_push(ctx(), m_vector, e); check_error(); }
void resize(unsigned sz) { Z3_ast_vector_resize(ctx(), m_vector, sz); check_error(); }
T back() const { return operator[](size() - 1); }
void pop_back() { assert(size() > 0); resize(size() - 1); }
bool empty() const { return size() == 0; }
ast_vector_tpl & operator=(ast_vector_tpl const & s) {
Z3_ast_vector_inc_ref(s.ctx(), s.m_vector);
// Z3_ast_vector_dec_ref(ctx(), m_vector);
m_ctx = s.m_ctx;
m_vector = s.m_vector;
return *this;
}
friend std::ostream & operator<<(std::ostream & out, ast_vector_tpl const & v) { out << Z3_ast_vector_to_string(v.ctx(), v); return out; }
};
typedef ast_vector_tpl<ast> ast_vector;
typedef ast_vector_tpl<expr> expr_vector;
typedef ast_vector_tpl<sort> sort_vector;
typedef ast_vector_tpl<func_decl> func_decl_vector;
#endif
#endif
class func_interp : public object {
::func_interp * m_interp;
void init(::func_interp * e) {
m_interp = e;
}
public:
func_interp(context & c, ::func_interp * e):object(c) { init(e); }
func_interp(func_interp const & s):object(s) { init(s.m_interp); }
~func_interp() { }
operator ::func_interp *() const { return m_interp; }
func_interp & operator=(func_interp const & s) {
m_ctx = s.m_ctx;
m_interp = s.m_interp;
return *this;
}
unsigned num_entries() const { return m_interp->num_entries(); }
expr get_arg(unsigned ent, unsigned arg) const {
return expr(ctx(),m_interp->get_entry(ent)->get_arg(arg));
}
expr get_value(unsigned ent) const {
return expr(ctx(),m_interp->get_entry(ent)->get_result());
}
expr else_value() const {
return expr(ctx(),m_interp->get_else());
}
};
class model : public object {
model_ref m_model;
void init(::model *m) {
m_model = m;
}
public:
model(context & c, ::model * m = 0):object(c), m_model(m) { }
model(model const & s):object(s), m_model(s.m_model) { }
~model() { }
operator ::model *() const { return m_model.get(); }
model & operator=(model const & s) {
// ::model *_inc_ref(s.ctx(), s.m_model);
// ::model *_dec_ref(ctx(), m_model);
m_ctx = s.m_ctx;
m_model = s.m_model.get();
return *this;
}
model & operator=(::model *s) {
m_model = s;
return *this;
}
bool null() const {return !m_model;}
expr eval(expr const & n, bool model_completion=true) const {
::model * _m = m_model.get();
expr_ref result(ctx().m());
_m->eval(n, result, model_completion);
return expr(ctx(), result);
}
void show() const;
void show_hash() const;
unsigned num_consts() const {return m_model.get()->get_num_constants();}
unsigned num_funcs() const {return m_model.get()->get_num_functions();}
func_decl get_const_decl(unsigned i) const {return func_decl(ctx(),m_model.get()->get_constant(i));}
func_decl get_func_decl(unsigned i) const {return func_decl(ctx(),m_model.get()->get_function(i));}
unsigned size() const;
func_decl operator[](unsigned i) const;
expr get_const_interp(func_decl f) const {
return ctx().cook(m_model->get_const_interp(to_func_decl(f.raw())));
}
func_interp get_func_interp(func_decl f) const {
return func_interp(ctx(),m_model->get_func_interp(to_func_decl(f.raw())));
}
#if 0
friend std::ostream & operator<<(std::ostream & out, model const & m) { out << Z3_model_to_string(m.ctx(), m); return out; }
#endif
};
#if 0
class stats : public object {
Z3_stats m_stats;
void init(Z3_stats e) {
m_stats = e;
Z3_stats_inc_ref(ctx(), m_stats);
}
public:
stats(context & c):object(c), m_stats(0) {}
stats(context & c, Z3_stats e):object(c) { init(e); }
stats(stats const & s):object(s) { init(s.m_stats); }
~stats() { if (m_stats) Z3_stats_dec_ref(ctx(), m_stats); }
operator Z3_stats() const { return m_stats; }
stats & operator=(stats const & s) {
Z3_stats_inc_ref(s.ctx(), s.m_stats);
if (m_stats) Z3_stats_dec_ref(ctx(), m_stats);
m_ctx = s.m_ctx;
m_stats = s.m_stats;
return *this;
}
unsigned size() const { return Z3_stats_size(ctx(), m_stats); }
std::string key(unsigned i) const { Z3_string s = Z3_stats_get_key(ctx(), m_stats, i); check_error(); return s; }
bool is_uint(unsigned i) const { Z3_bool r = Z3_stats_is_uint(ctx(), m_stats, i); check_error(); return r != 0; }
bool is_double(unsigned i) const { Z3_bool r = Z3_stats_is_double(ctx(), m_stats, i); check_error(); return r != 0; }
unsigned uint_value(unsigned i) const { unsigned r = Z3_stats_get_uint_value(ctx(), m_stats, i); check_error(); return r; }
double double_value(unsigned i) const { double r = Z3_stats_get_double_value(ctx(), m_stats, i); check_error(); return r; }
friend std::ostream & operator<<(std::ostream & out, stats const & s) { out << Z3_stats_to_string(s.ctx(), s); return out; }
};
#endif
enum check_result {
unsat, sat, unknown
};
class fixedpoint : public object {
public:
void get_rules(std::vector<expr> &rules);
void get_assertions(std::vector<expr> &rules);
void register_relation(const func_decl &rela);
void add_rule(const expr &clause, const symbol &name);
void assert_cnst(const expr &cnst);
};
inline std::ostream & operator<<(std::ostream & out, check_result r) {
if (r == unsat) out << "unsat";
else if (r == sat) out << "sat";
else out << "unknown";
return out;
}
inline check_result to_check_result(lbool l) {
if (l == l_true) return sat;
else if (l == l_false) return unsat;
return unknown;
}
class solver : public object {
protected:
::solver *m_solver;
model the_model;
bool canceled;
proof_gen_mode m_mode;
bool extensional;
public:
solver(context & c, bool extensional = false, bool models = true);
solver(context & c, ::solver *s):object(c),the_model(c) { m_solver = s; canceled = false;}
solver(solver const & s):object(s), the_model(s.the_model) { m_solver = s.m_solver; canceled = false;}
~solver() {
if(m_solver)
dealloc(m_solver);
}
operator ::solver*() const { return m_solver; }
solver & operator=(solver const & s) {
m_ctx = s.m_ctx;
m_solver = s.m_solver;
the_model = s.the_model;
m_mode = s.m_mode;
return *this;
}
struct cancel_exception {};
void checkpoint(){
if(canceled)
throw(cancel_exception());
}
// void set(params const & p) { Z3_solver_set_params(ctx(), m_solver, p); check_error(); }
void push() { scoped_proof_mode spm(m(),m_mode); m_solver->push(); }
void pop(unsigned n = 1) { scoped_proof_mode spm(m(),m_mode); m_solver->pop(n); }
// void reset() { Z3_solver_reset(ctx(), m_solver); check_error(); }
void add(expr const & e) { scoped_proof_mode spm(m(),m_mode); m_solver->assert_expr(e); }
check_result check() {
scoped_proof_mode spm(m(),m_mode);
checkpoint();
lbool r = m_solver->check_sat(0,0);
model_ref m;
m_solver->get_model(m);
the_model = m.get();
return to_check_result(r);
}
check_result check_keep_model(unsigned n, expr * const assumptions, unsigned *core_size = 0, expr *core = 0) {
scoped_proof_mode spm(m(),m_mode);
model old_model(the_model);
check_result res = check(n,assumptions,core_size,core);
if(the_model == 0)
the_model = old_model;
return res;
}
check_result check(unsigned n, expr * const assumptions, unsigned *core_size = 0, expr *core = 0) {
scoped_proof_mode spm(m(),m_mode);
checkpoint();
std::vector< ::expr *> _assumptions(n);
for (unsigned i = 0; i < n; i++) {
_assumptions[i] = to_expr(assumptions[i]);
}
the_model = 0;
lbool r = m_solver->check_sat(n, VEC2PTR(_assumptions));
if(core_size && core){
ptr_vector< ::expr> _core;
m_solver->get_unsat_core(_core);
*core_size = _core.size();
for(unsigned i = 0; i < *core_size; i++)
core[i] = expr(ctx(),_core[i]);
}
model_ref m;
m_solver->get_model(m);
the_model = m.get();
return to_check_result(r);
}
#if 0
check_result check(expr_vector assumptions) {
scoped_proof_mode spm(m(),m_mode);
unsigned n = assumptions.size();
z3array<Z3_ast> _assumptions(n);
for (unsigned i = 0; i < n; i++) {
check_context(*this, assumptions[i]);
_assumptions[i] = assumptions[i];
}
Z3_lbool r = Z3_check_assumptions(ctx(), m_solver, n, _assumptions.ptr());
check_error();
return to_check_result(r);
}
#endif
model get_model() const { return model(ctx(), the_model); }
// std::string reason_unknown() const { Z3_string r = Z3_solver_get_reason_unknown(ctx(), m_solver); check_error(); return r; }
// stats statistics() const { Z3_stats r = Z3_solver_get_statistics(ctx(), m_solver); check_error(); return stats(ctx(), r); }
#if 0
expr_vector unsat_core() const { Z3_ast_vector r = Z3_solver_get_unsat_core(ctx(), m_solver); check_error(); return expr_vector(ctx(), r); }
expr_vector assertions() const { Z3_ast_vector r = Z3_solver_get_assertions(ctx(), m_solver); check_error(); return expr_vector(ctx(), r); }
#endif
// expr proof() const { Z3_ast r = Z3_solver_proof(ctx(), m_solver); check_error(); return expr(ctx(), r); }
// friend std::ostream & operator<<(std::ostream & out, solver const & s) { out << Z3_solver_to_string(s.ctx(), s); return out; }
int get_num_decisions();
void cancel(){
scoped_proof_mode spm(m(),m_mode);
canceled = true;
m().limit().cancel();
}
unsigned get_scope_level(){ scoped_proof_mode spm(m(),m_mode); return m_solver->get_scope_level();}
void show();
void print(const char *filename);
void show_assertion_ids();
proof get_proof(){
scoped_proof_mode spm(m(),m_mode);
return proof(ctx(),m_solver->get_proof());
}
bool extensional_array_theory() {return extensional;}
};
#if 0
class goal : public object {
Z3_goal m_goal;
void init(Z3_goal s) {
m_goal = s;
Z3_goal_inc_ref(ctx(), s);
}
public:
goal(context & c, bool models=true, bool unsat_cores=false, bool proofs=false):object(c) { init(Z3_mk_goal(c, models, unsat_cores, proofs)); }
goal(context & c, Z3_goal s):object(c) { init(s); }
goal(goal const & s):object(s) { init(s.m_goal); }
~goal() { Z3_goal_dec_ref(ctx(), m_goal); }
operator Z3_goal() const { return m_goal; }
goal & operator=(goal const & s) {
Z3_goal_inc_ref(s.ctx(), s.m_goal);
Z3_goal_dec_ref(ctx(), m_goal);
m_ctx = s.m_ctx;
m_goal = s.m_goal;
return *this;
}
void add(expr const & f) { check_context(*this, f); Z3_goal_assert(ctx(), m_goal, f); check_error(); }
unsigned size() const { return Z3_goal_size(ctx(), m_goal); }
expr operator[](unsigned i) const { Z3_ast r = Z3_goal_formula(ctx(), m_goal, i); check_error(); return expr(ctx(), r); }
Z3_goal_prec precision() const { return Z3_goal_precision(ctx(), m_goal); }
bool inconsistent() const { return Z3_goal_inconsistent(ctx(), m_goal) != 0; }
unsigned depth() const { return Z3_goal_depth(ctx(), m_goal); }
void reset() { Z3_goal_reset(ctx(), m_goal); }
unsigned num_exprs() const { Z3_goal_num_exprs(ctx(), m_goal); }
bool is_decided_sat() const { return Z3_goal_is_decided_sat(ctx(), m_goal) != 0; }
bool is_decided_unsat() const { return Z3_goal_is_decided_unsat(ctx(), m_goal) != 0; }
friend std::ostream & operator<<(std::ostream & out, goal const & g) { out << Z3_goal_to_string(g.ctx(), g); return out; }
};
class apply_result : public object {
Z3_apply_result m_apply_result;
void init(Z3_apply_result s) {
m_apply_result = s;
Z3_apply_result_inc_ref(ctx(), s);
}
public:
apply_result(context & c, Z3_apply_result s):object(c) { init(s); }
apply_result(apply_result const & s):object(s) { init(s.m_apply_result); }
~apply_result() { Z3_apply_result_dec_ref(ctx(), m_apply_result); }
operator Z3_apply_result() const { return m_apply_result; }
apply_result & operator=(apply_result const & s) {
Z3_apply_result_inc_ref(s.ctx(), s.m_apply_result);
Z3_apply_result_dec_ref(ctx(), m_apply_result);
m_ctx = s.m_ctx;
m_apply_result = s.m_apply_result;
return *this;
}
unsigned size() const { return Z3_apply_result_get_num_subgoals(ctx(), m_apply_result); }
goal operator[](unsigned i) const { Z3_goal r = Z3_apply_result_get_subgoal(ctx(), m_apply_result, i); check_error(); return goal(ctx(), r); }
goal operator[](int i) const { assert(i >= 0); return this->operator[](static_cast<unsigned>(i)); }
model convert_model(model const & m, unsigned i = 0) const {
check_context(*this, m);
Z3_model new_m = Z3_apply_result_convert_model(ctx(), m_apply_result, i, m);
check_error();
return model(ctx(), new_m);
}
friend std::ostream & operator<<(std::ostream & out, apply_result const & r) { out << Z3_apply_result_to_string(r.ctx(), r); return out; }
};
class tactic : public object {
Z3_tactic m_tactic;
void init(Z3_tactic s) {
m_tactic = s;
Z3_tactic_inc_ref(ctx(), s);
}
public:
tactic(context & c, char const * name):object(c) { Z3_tactic r = Z3_mk_tactic(c, name); check_error(); init(r); }
tactic(context & c, Z3_tactic s):object(c) { init(s); }
tactic(tactic const & s):object(s) { init(s.m_tactic); }
~tactic() { Z3_tactic_dec_ref(ctx(), m_tactic); }
operator Z3_tactic() const { return m_tactic; }
tactic & operator=(tactic const & s) {
Z3_tactic_inc_ref(s.ctx(), s.m_tactic);
Z3_tactic_dec_ref(ctx(), m_tactic);
m_ctx = s.m_ctx;
m_tactic = s.m_tactic;
return *this;
}
solver mk_solver() const { Z3_solver r = Z3_mk_solver_from_tactic(ctx(), m_tactic); check_error(); return solver(ctx(), r); }
apply_result apply(goal const & g) const {
check_context(*this, g);
Z3_apply_result r = Z3_tactic_apply(ctx(), m_tactic, g);
check_error();
return apply_result(ctx(), r);
}
apply_result operator()(goal const & g) const {
return apply(g);
}
std::string help() const { char const * r = Z3_tactic_get_help(ctx(), m_tactic); check_error(); return r; }
friend tactic operator&(tactic const & t1, tactic const & t2) {
check_context(t1, t2);
Z3_tactic r = Z3_tactic_and_then(t1.ctx(), t1, t2);
t1.check_error();
return tactic(t1.ctx(), r);
}
friend tactic operator|(tactic const & t1, tactic const & t2) {
check_context(t1, t2);
Z3_tactic r = Z3_tactic_or_else(t1.ctx(), t1, t2);
t1.check_error();
return tactic(t1.ctx(), r);
}
friend tactic repeat(tactic const & t, unsigned max=UINT_MAX) {
Z3_tactic r = Z3_tactic_repeat(t.ctx(), t, max);
t.check_error();
return tactic(t.ctx(), r);
}
friend tactic with(tactic const & t, params const & p) {
Z3_tactic r = Z3_tactic_using_params(t.ctx(), t, p);
t.check_error();
return tactic(t.ctx(), r);
}
friend tactic try_for(tactic const & t, unsigned ms) {
Z3_tactic r = Z3_tactic_try_for(t.ctx(), t, ms);
t.check_error();
return tactic(t.ctx(), r);
}
};
class probe : public object {
Z3_probe m_probe;
void init(Z3_probe s) {
m_probe = s;
Z3_probe_inc_ref(ctx(), s);
}
public:
probe(context & c, char const * name):object(c) { Z3_probe r = Z3_mk_probe(c, name); check_error(); init(r); }
probe(context & c, double val):object(c) { Z3_probe r = Z3_probe_const(c, val); check_error(); init(r); }
probe(context & c, Z3_probe s):object(c) { init(s); }
probe(probe const & s):object(s) { init(s.m_probe); }
~probe() { Z3_probe_dec_ref(ctx(), m_probe); }
operator Z3_probe() const { return m_probe; }
probe & operator=(probe const & s) {
Z3_probe_inc_ref(s.ctx(), s.m_probe);
Z3_probe_dec_ref(ctx(), m_probe);
m_ctx = s.m_ctx;
m_probe = s.m_probe;
return *this;
}
double apply(goal const & g) const { double r = Z3_probe_apply(ctx(), m_probe, g); check_error(); return r; }
double operator()(goal const & g) const { return apply(g); }
friend probe operator<=(probe const & p1, probe const & p2) {
check_context(p1, p2); Z3_probe r = Z3_probe_le(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
}
friend probe operator<=(probe const & p1, double p2) { return p1 <= probe(p1.ctx(), p2); }
friend probe operator<=(double p1, probe const & p2) { return probe(p2.ctx(), p1) <= p2; }
friend probe operator>=(probe const & p1, probe const & p2) {
check_context(p1, p2); Z3_probe r = Z3_probe_ge(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
}
friend probe operator>=(probe const & p1, double p2) { return p1 >= probe(p1.ctx(), p2); }
friend probe operator>=(double p1, probe const & p2) { return probe(p2.ctx(), p1) >= p2; }
friend probe operator<(probe const & p1, probe const & p2) {
check_context(p1, p2); Z3_probe r = Z3_probe_lt(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
}
friend probe operator<(probe const & p1, double p2) { return p1 < probe(p1.ctx(), p2); }
friend probe operator<(double p1, probe const & p2) { return probe(p2.ctx(), p1) < p2; }
friend probe operator>(probe const & p1, probe const & p2) {
check_context(p1, p2); Z3_probe r = Z3_probe_gt(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
}
friend probe operator>(probe const & p1, double p2) { return p1 > probe(p1.ctx(), p2); }
friend probe operator>(double p1, probe const & p2) { return probe(p2.ctx(), p1) > p2; }
friend probe operator==(probe const & p1, probe const & p2) {
check_context(p1, p2); Z3_probe r = Z3_probe_eq(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
}
friend probe operator==(probe const & p1, double p2) { return p1 == probe(p1.ctx(), p2); }
friend probe operator==(double p1, probe const & p2) { return probe(p2.ctx(), p1) == p2; }
friend probe operator&&(probe const & p1, probe const & p2) {
check_context(p1, p2); Z3_probe r = Z3_probe_and(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
}
friend probe operator||(probe const & p1, probe const & p2) {
check_context(p1, p2); Z3_probe r = Z3_probe_or(p1.ctx(), p1, p2); p1.check_error(); return probe(p1.ctx(), r);
}
friend probe operator!(probe const & p) {
Z3_probe r = Z3_probe_not(p.ctx(), p); p.check_error(); return probe(p.ctx(), r);
}
};
inline tactic fail_if(probe const & p) {
Z3_tactic r = Z3_tactic_fail_if(p.ctx(), p);
p.check_error();
return tactic(p.ctx(), r);
}
inline tactic when(probe const & p, tactic const & t) {
check_context(p, t);
Z3_tactic r = Z3_tactic_when(t.ctx(), p, t);
t.check_error();
return tactic(t.ctx(), r);
}
inline tactic cond(probe const & p, tactic const & t1, tactic const & t2) {
check_context(p, t1); check_context(p, t2);
Z3_tactic r = Z3_tactic_cond(t1.ctx(), p, t1, t2);
t1.check_error();
return tactic(t1.ctx(), r);
}
#endif
inline expr context::bool_val(bool b){return b ? make(True) : make(False);}
inline symbol context::str_symbol(char const * s) { ::symbol r = ::symbol(s); return symbol(*this, r); }
inline symbol context::int_symbol(int n) { ::symbol r = ::symbol(n); return symbol(*this, r); }
inline sort context::bool_sort() {
::sort *s = m().mk_sort(m_basic_fid, BOOL_SORT);
return sort(*this, s);
}
inline sort context::int_sort() {
::sort *s = m().mk_sort(m_arith_fid, INT_SORT);
return sort(*this, s);
}
inline sort context::real_sort() {
::sort *s = m().mk_sort(m_arith_fid, REAL_SORT);
return sort(*this, s);
}
inline sort context::array_sort(sort d, sort r) {
parameter params[2] = { parameter(d), parameter(to_sort(r)) };
::sort * s = m().mk_sort(m_array_fid, ARRAY_SORT, 2, params);
return sort(*this, s);
}
inline func_decl context::function(symbol const & name, unsigned arity, sort const * domain, sort const & range) {
std::vector< ::sort *> sv(arity);
for(unsigned i = 0; i < arity; i++)
sv[i] = domain[i];
::func_decl* d = m().mk_func_decl(name,arity, VEC2PTR(sv),range);
return func_decl(*this,d);
}
inline func_decl context::function(char const * name, unsigned arity, sort const * domain, sort const & range) {
return function(str_symbol(name), arity, domain, range);
}
inline func_decl context::function(char const * name, sort const & domain, sort const & range) {
sort args[1] = { domain };
return function(name, 1, args, range);
}
inline func_decl context::function(char const * name, sort const & d1, sort const & d2, sort const & range) {
sort args[2] = { d1, d2 };
return function(name, 2, args, range);
}
inline func_decl context::function(char const * name, sort const & d1, sort const & d2, sort const & d3, sort const & range) {
sort args[3] = { d1, d2, d3 };
return function(name, 3, args, range);
}
inline func_decl context::function(char const * name, sort const & d1, sort const & d2, sort const & d3, sort const & d4, sort const & range) {
sort args[4] = { d1, d2, d3, d4 };
return function(name, 4, args, range);
}
inline func_decl context::function(char const * name, sort const & d1, sort const & d2, sort const & d3, sort const & d4, sort const & d5, sort const & range) {
sort args[5] = { d1, d2, d3, d4, d5 };
return function(name, 5, args, range);
}
inline expr context::constant(symbol const & name, sort const & s) {
::expr *r = m().mk_const(m().mk_const_decl(name, s));
return expr(*this, r);
}
inline expr context::constant(char const * name, sort const & s) { return constant(str_symbol(name), s); }
inline expr context::bool_const(char const * name) { return constant(name, bool_sort()); }
inline expr context::int_const(char const * name) { return constant(name, int_sort()); }
inline expr context::real_const(char const * name) { return constant(name, real_sort()); }
inline expr context::bv_const(char const * name, unsigned sz) { return constant(name, bv_sort(sz)); }
inline expr func_decl::operator()(const std::vector<expr> &args) const {
return operator()(args.size(), VEC2PTR(args));
}
inline expr func_decl::operator()() const {
return operator()(0,0);
}
inline expr func_decl::operator()(expr const & a) const {
return operator()(1,&a);
}
inline expr func_decl::operator()(expr const & a1, expr const & a2) const {
expr args[2] = {a1,a2};
return operator()(2,args);
}
inline expr func_decl::operator()(expr const & a1, expr const & a2, expr const & a3) const {
expr args[3] = {a1,a2,a3};
return operator()(3,args);
}
inline expr func_decl::operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4) const {
expr args[4] = {a1,a2,a3,a4};
return operator()(4,args);
}
inline expr func_decl::operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4, expr const & a5) const {
expr args[5] = {a1,a2,a3,a4,a5};
return operator()(5,args);
}
inline expr select(expr const & a, expr const & i) { return a.ctx().make(Select,a,i); }
inline expr store(expr const & a, expr const & i, expr const & v) { return a.ctx().make(Store,a,i,v); }
inline expr forall(const std::vector<expr> &quants, const expr &body){
return body.ctx().make_quant(Forall,quants,body);
}
inline expr exists(const std::vector<expr> &quants, const expr &body){
return body.ctx().make_quant(Exists,quants,body);
}
inline expr context::int_val(int n){
:: sort *r = m().mk_sort(m_arith_fid, INT_SORT);
return cook(m_arith_util.mk_numeral(rational(n),r));
}
class literals : public object {
};
class TermTree {
public:
TermTree(expr _term){
term = _term;
}
TermTree(expr _term, const std::vector<TermTree *> &_children){
term = _term;
children = _children;
}
inline expr getTerm(){return term;}
inline std::vector<expr> &getTerms(){return terms;}
inline std::vector<TermTree *> &getChildren(){
return children;
}
inline int number(int from){
for(unsigned i = 0; i < children.size(); i++)
from = children[i]->number(from);
num = from;
return from + 1;
}
inline int getNumber(){
return num;
}
inline void setTerm(expr t){term = t;}
inline void addTerm(expr t){terms.push_back(t);}
inline void setChildren(const std::vector<TermTree *> & _children){
children = _children;
}
inline void setNumber(int _num){
num = _num;
}
~TermTree(){
for(unsigned i = 0; i < children.size(); i++)
delete children[i];
}
private:
expr term;
std::vector<expr> terms;
std::vector<TermTree *> children;
int num;
};
typedef context interpolating_context;
class interpolating_solver : public solver {
public:
interpolating_solver(context &ctx, bool models = true)
: solver(ctx, true, models)
{
weak_mode = false;
}
public:
lbool interpolate(const std::vector<expr> &assumptions,
std::vector<expr> &interpolants,
model &_model,
literals &lits,
bool incremental
);
lbool interpolate_tree(TermTree *assumptions,
TermTree *&interpolants,
model &_model,
literals &lits,
bool incremental
);
bool read_interpolation_problem(const std::string &file_name,
std::vector<expr> &assumptions,
std::vector<expr> &theory,
std::string &error_message
);
void write_interpolation_problem(const std::string &file_name,
const std::vector<expr> &assumptions,
const std::vector<expr> &theory
);
void AssertInterpolationAxiom(const expr &expr);
void RemoveInterpolationAxiom(const expr &expr);
void SetWeakInterpolants(bool weak);
void SetPrintToFile(const std::string &file_name);
const std::vector<expr> &GetInterpolationAxioms() {return theory;}
const char *profile();
private:
bool weak_mode;
std::string print_filename;
std::vector<expr> theory;
};
inline expr context::cook(::expr *a) {return expr(*this,a);}
inline std::vector<expr> context::cook(ptr_vector< ::expr> v) {
std::vector<expr> _v(v.size());
for(unsigned i = 0; i < v.size(); i++)
_v[i] = cook(v[i]);
return _v;
}
inline ::expr *context::uncook(const expr &a) {
m().inc_ref(a.raw());
return to_expr(a.raw());
}
inline expr context::translate(const expr &e) {
::expr *f = to_expr(e.raw());
if(&e.ctx().m() != &m()) // same ast manager -> no translation
throw "ast manager mismatch";
return cook(f);
}
inline func_decl context::translate(const func_decl &e) {
::func_decl *f = to_func_decl(e.raw());
if(&e.ctx().m() != &m()) // same ast manager -> no translation
throw "ast manager mismatch";
return func_decl(*this,f);
}
typedef double clock_t;
clock_t current_time();
inline void output_time(std::ostream &os, clock_t time){os << time;}
template <class X> class uptr {
public:
X *ptr;
uptr(){ptr = 0;}
void set(X *_ptr){
if(ptr) delete ptr;
ptr = _ptr;
}
X *get(){ return ptr;}
~uptr(){
if(ptr) delete ptr;
}
};
};
// to make Duality::ast hashable
namespace hash_space {
template <>
class hash<Duality::ast> {
public:
size_t operator()(const Duality::ast &s) const {
return s.raw()->get_id();
}
};
}
// to make Duality::ast usable in ordered collections
namespace std {
template <>
class less<Duality::ast> {
public:
bool operator()(const Duality::ast &s, const Duality::ast &t) const {
// return s.raw() < t.raw();
return s.raw()->get_id() < t.raw()->get_id();
}
};
}
// to make Duality::ast usable in ordered collections
namespace std {
template <>
class less<Duality::expr> {
public:
bool operator()(const Duality::expr &s, const Duality::expr &t) const {
// return s.raw() < t.raw();
return s.raw()->get_id() < t.raw()->get_id();
}
};
}
// to make Duality::func_decl hashable
namespace hash_space {
template <>
class hash<Duality::func_decl> {
public:
size_t operator()(const Duality::func_decl &s) const {
return s.raw()->get_id();
}
};
}
// to make Duality::func_decl usable in ordered collections
namespace std {
template <>
class less<Duality::func_decl> {
public:
bool operator()(const Duality::func_decl &s, const Duality::func_decl &t) const {
// return s.raw() < t.raw();
return s.raw()->get_id() < t.raw()->get_id();
}
};
}
#endif