3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-25 10:05:32 +00:00
z3/src/math/bigfix/u256.h
Nikolaj Bjorner 1e3c3dc48f enable fixed propagation from inequalities
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2021-08-14 11:58:19 -07:00

78 lines
3.3 KiB
C++

#pragma once
#include "util/util.h"
#include "util/rational.h"
class u256 {
uint64_t m_num[4];
u256(uint64_t const* v);
public:
u256();
u256(uint64_t n);
u256(int n);
u256(rational const& n);
rational to_rational() const;
u256& operator=(uint64_t n) {
*this = u256(n);
return *this;
}
unsigned hash() const;
u256 operator*(u256 const& other) const;
u256 operator+(u256 const& other) const { u256 r = *this; return r += other; }
u256 operator-(u256 const& other) const { u256 r = *this; return r -= other; }
u256 operator/(u256 const& other) const;
u256 operator-() const { u256 r = *this; return r.uminus(); }
u256 operator<<(uint64_t sh) const;
u256 operator>>(uint64_t sh) const;
u256 operator&(u256 const& other) const;
u256 mod(u256 const& other) const;
u256 mul_inverse() const;
unsigned trailing_zeros() const;
u256 gcd(u256 const& other) const;
// updates
void reset() { m_num[0] = m_num[1] = m_num[2] = m_num[3] = 0; }
u256& operator+=(u256 const& other);
u256& operator*=(u256 const& other);
u256& operator-=(u256 const& other);
u256& operator/=(u256 const& other) { *this = *this / other; return *this; }
u256& operator>>=(uint64_t sh) { *this = *this >> sh; return *this; }
u256& operator<<=(uint64_t sh) { *this = *this << sh; return *this; }
u256& uminus(); /* unary minus */
// comparisons
bool operator==(u256 const& other) const { return m_num[0] == other.m_num[0] && m_num[1] == other.m_num[1] && m_num[2] == other.m_num[2] && m_num[3] == other.m_num[3]; }
bool operator!=(u256 const& other) const { return !(*this == other); }
bool operator<(u256 const& other) const;
bool operator<=(u256 const& other) const { return !(other < *this); }
bool operator>(u256 const& other) const { return other < *this; }
bool operator>=(u256 const& other) const { return !(*this < other); }
bool operator==(uint64_t other) const { return m_num[0] == other && m_num[1] == 0 && m_num[2] == 0 && m_num[3] == 0; }
bool operator!=(uint64_t other) const { return !(m_num[0] == other && m_num[1] == 0 && m_num[2] == 0 && m_num[3] == 0); }
bool operator<(uint64_t other) const;
bool operator<=(uint64_t other) const { return !(*this > other); }
bool operator>(uint64_t other) const;
bool operator>=(uint64_t other) const { return !(*this < other); }
bool is_zero() const { return m_num[0] == 0 && m_num[1] == 0 && m_num[2] == 0 && m_num[3] == 0; }
bool is_one() const { return m_num[0] == 1 && m_num[1] == 0 && m_num[2] == 0 && m_num[3] == 0; }
bool is_even() const { return (m_num[0]&1) == 0; }
std::ostream& display(std::ostream& out) const;
};
inline std::ostream& operator<<(std::ostream& out, u256 const& u) {
return u.display(out);
}
inline bool operator<(uint64_t n, u256 const& y) { return y > n; }
inline bool operator<=(uint64_t n, u256 const& y) { return y >= n; }
inline bool operator>(uint64_t n, u256 const& y) { return y < n; }
inline unsigned trailing_zeros(u256 const& n) { return n.trailing_zeros(); }
inline u256 operator-(uint64_t n, u256 const& y) { return u256(n) - y; }
inline bool operator>=(uint64_t n, u256 const& y) { return y <= n; }
inline rational to_rational(u256 const& x) { return x.to_rational(); }