3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-25 18:15:32 +00:00
z3/src/math/bigfix/u256.cpp
Nikolaj Bjorner 1e3c3dc48f enable fixed propagation from inequalities
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2021-08-14 11:58:19 -07:00

292 lines
7.7 KiB
C++

#include "util/mpn.h"
#include "math/bigfix/u256.h"
#include "math/bigfix/Hacl_Bignum256.h"
#include <memory>
u256::u256() {
m_num[0] = m_num[1] = m_num[2] = m_num[3] = 0;
}
u256::u256(uint64_t n) {
// TBD use instead: bn_from_bytes_be?
m_num[0] = n;
m_num[1] = m_num[2] = m_num[3] = 0;
}
u256::u256(int n) {
SASSERT(n >= 0);
m_num[0] = n;
m_num[1] = m_num[2] = m_num[3] = 0;
}
u256::u256(rational const& n) {
#if 1
for (unsigned i = 0; i < 4; ++i) {
m_num[i] = 0;
for (unsigned j = 0; j < 64; ++j)
m_num[i] |= n.get_bit(i * 64 + j) << j;
}
#else
uint8_t bytes[32];
for (unsigned i = 0; i < 32; ++i)
bytes[i] = 0;
for (unsigned i = 0; i < 256; ++i)
bytes[(i / 7)] |= n.get_bit(i) << (i % 8);
auto* v = Hacl_Bignum256_new_bn_from_bytes_be(32, bytes);
std::uninitialized_copy(v, v + 4, m_num);
free(v);
#endif
}
u256::u256(uint64_t const* v) {
std::uninitialized_copy(v, v + 4, m_num);
}
unsigned u256::hash() const {
uint64_t h = m_num[0] + m_num[1] + m_num[2] + m_num[3];
return static_cast<unsigned>(h ^ (h >> 32ull));
}
u256 u256::operator*(u256 const& other) const {
// TBD: maybe just use mpn_manager::mul?
uint64_t result[8];
Hacl_Bignum256_mul(const_cast<uint64_t*>(m_num), const_cast<uint64_t*>(other.m_num), result);
return u256(result);
}
u256 u256::operator<<(uint64_t sh) const {
u256 r;
if (0 == sh || sh >= 256)
;
else if (sh >= 176)
r.m_num[3] = m_num[0] << (sh - 176);
else if (sh >= 128) {
sh -= 128;
r.m_num[2] = m_num[0] << sh;
r.m_num[3] = (m_num[1] << sh) | (m_num[0] >> (64 - sh));
}
else if (sh >= 64) {
sh -= 64;
r.m_num[1] = m_num[0] << sh;
r.m_num[2] = (m_num[1] << sh) | (m_num[0] >> (64 - sh));
r.m_num[3] = (m_num[2] << sh) | (m_num[1] >> (64 - sh));
}
else {
r.m_num[0] = m_num[0] << sh;
r.m_num[1] = (m_num[1] << sh) | (m_num[0] >> (64 - sh));
r.m_num[2] = (m_num[2] << sh) | (m_num[1] >> (64 - sh));
r.m_num[3] = (m_num[3] << sh) | (m_num[2] >> (64 - sh));
}
return r;
}
u256 u256::operator>>(uint64_t sh) const {
u256 r;
if (0 == sh || sh >= 256)
;
else if (sh >= 176)
r.m_num[0] = m_num[3] >> (sh - 176);
else if (sh >= 128) {
sh -= 128;
r.m_num[0] = (m_num[2] >> sh) | (m_num[3] << (64 - sh));
r.m_num[1] = (m_num[3] >> sh);
}
else if (sh >= 64) {
sh -= 64;
r.m_num[0] = (m_num[1] >> sh) | (m_num[2] << (64 - sh));
r.m_num[1] = (m_num[2] >> sh) | (m_num[3] << (64 - sh));
r.m_num[2] = (m_num[3] >> sh);
}
else {
r.m_num[0] = (m_num[0] >> sh) | (m_num[1] << (64 - sh));
r.m_num[1] = (m_num[1] >> sh) | (m_num[2] << (64 - sh));
r.m_num[2] = (m_num[2] >> sh) | (m_num[3] << (64 - sh));
r.m_num[3] = (m_num[3] >> sh);
}
return r;
}
u256 u256::operator&(u256 const& other) const {
u256 r;
for (unsigned i = 0; i < 4; ++i)
r.m_num[i] = m_num[i] & other.m_num[i];
return r;
}
u256& u256::operator*=(u256 const& other) {
uint64_t result[8];
Hacl_Bignum256_mul(const_cast<uint64_t*>(m_num), const_cast<uint64_t*>(other.m_num), result);
std::uninitialized_copy(m_num, m_num + 4, result);
return *this;
}
u256& u256::operator+=(u256 const& other) {
Hacl_Bignum256_add(const_cast<uint64_t*>(m_num), const_cast<uint64_t*>(other.m_num), m_num);
return *this;
}
u256& u256::operator-=(u256 const& other) {
Hacl_Bignum256_sub(const_cast<uint64_t*>(m_num), const_cast<uint64_t*>(other.m_num), m_num);
return *this;
}
u256& u256::uminus() {
uint64_t zero[4];
zero[0] = zero[1] = zero[2] = zero[3] = 0;
Hacl_Bignum256_sub(zero, const_cast<uint64_t*>(m_num), m_num);
return *this;
}
u256 u256::mod(u256 const& other) const {
if (other.is_zero())
throw default_exception("mod 0 is not defined");
if (other.is_one())
return u256();
u256 r;
uint64_t a[8];
a[4] = a[5] = a[6] = a[7] = 0;
if (!other.is_even()) {
std::uninitialized_copy(m_num, m_num + 4, a);
VERIFY(Hacl_Bignum256_mod(const_cast<uint64_t*>(other.m_num), a, r.m_num));
return r;
}
// claim:
// a mod 2^k*b = ((a >> k) mod b) << k | (a & ((1 << k) - 1))
unsigned tz = other.trailing_zeros();
u256 thz = *this >> tz;
u256 n = other >> tz;
SASSERT(!n.is_even() && n > 1);
std::uninitialized_copy(thz.m_num, thz.m_num + 4, a);
VERIFY(Hacl_Bignum256_mod(const_cast<uint64_t*>(n.m_num), a, r.m_num));
r = r << tz;
r += *this & ((u256(1) << tz) - 1);
return r;
}
u256 u256::mul_inverse() const {
if (is_zero())
return *this;
if (is_one())
return *this;
if (is_even())
return (*this >> trailing_zeros()).mul_inverse();
u256 t0(1);
u256 t1(-t0);
u256 r0(*this);
u256 r1(-r0);
while (!r1.is_zero()) {
u256 q = r0 / r1;
u256 tmp = t1;
t1 = t0 - q * t1;
t0 = tmp;
tmp = r1;
r1 = r0 - q * r1;
r0 = tmp;
}
return t0;
}
unsigned u256::trailing_zeros() const {
unsigned r = 0;
for (unsigned i = 0; i < 3; ++i) {
r += ::trailing_zeros(m_num[i]);
if (r != (i+1)*64)
return r;
}
return r + ::trailing_zeros(m_num[3]);
}
u256 u256::gcd(u256 const& other) const {
if (is_zero())
return other;
if (other.is_zero())
return *this;
if (is_one())
return *this;
if (other.is_one())
return other;
u256 x = *this;
u256 y = other;
unsigned tz = x.trailing_zeros();
unsigned shift = std::min(y.trailing_zeros(), tz);
x = x >> tz;
if (x == 1)
return x << shift;
if (y == 1)
return y << shift;
if (x == y)
return x << shift;
do {
tz = y.trailing_zeros();
y = y >> tz;
if (x > y)
std::swap(x, y);
y -= x;
}
while (!y.is_zero());
return x << shift;
}
bool u256::operator<(u256 const& other) const {
return 0 != Hacl_Bignum256_lt_mask(const_cast<uint64_t*>(m_num), const_cast<uint64_t*>(other.m_num));
}
bool u256::operator<(uint64_t other) const {
uint64_t _other[4];
_other[0] = other;
_other[1] = _other[2] = _other[3] = 0;
return 0 != Hacl_Bignum256_lt_mask(const_cast<uint64_t*>(m_num), _other);
}
bool u256::operator>(uint64_t other) const {
uint64_t _other[4];
_other[0] = other;
_other[1] = _other[2] = _other[3] = 0;
return 0 != Hacl_Bignum256_lt_mask(_other, const_cast<uint64_t*>(m_num));
}
rational u256::to_rational() const {
rational n;
for (unsigned i = 0; i < 4; ++i)
if (m_num[i] != 0)
n += rational(m_num[i], rational::ui64()) * rational::power_of_two(i * 64);
return n;
}
std::ostream& u256::display(std::ostream& out) const {
return out << to_rational();
}
// mpn implements the main functionality needed for unsigned fixed-point arithmetic
// we could use mpn for add/sub/mul as well and maybe punt on Hacl dependency.
u256 u256::operator/(u256 const& other) const {
u256 result;
mpn_manager m;
mpn_digit rem[8];
unsigned n1 = 0, n2 = 0;
for (unsigned i = 4; i-- > 0; ) {
if (m_num[i]) {
n1 = 2 * (i + 1);
break;
}
}
for (unsigned i = 4; i-- > 0; ) {
if (other.m_num[i]) {
n2 = 2 * (i + 1);
break;
}
}
VERIFY(m.div(reinterpret_cast<mpn_digit const*>(m_num), n1,
reinterpret_cast<mpn_digit const*>(other.m_num), n2,
reinterpret_cast<mpn_digit*>(result.m_num),
rem));
return result;
}