3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-11 19:53:34 +00:00
z3/src/math/lp/nla_solver.h
Lev Nachmanson 3e4a4c6df2 rebase with master branch
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
2020-05-11 19:12:02 -07:00

53 lines
1.3 KiB
C++

/*++
Copyright (c) 2017 Microsoft Corporation
Author:
Lev Nachmanson (levnach)
Nikolaj Bjorner (nbjorner)
--*/
#pragma once
#include "util/vector.h"
#include "math/lp/lp_settings.h"
#include "util/rlimit.h"
#include "util/params.h"
#include "math/lp/lar_solver.h"
#include "math/lp/monic.h"
#include "math/lp/nla_settings.h"
#include "math/lp/nla_core.h"
namespace nra {
class solver;
}
namespace nla {
class core;
// nonlinear integer incremental linear solver
class solver {
reslimit m_res_limit;
core* m_core;
nra::solver m_nra;
bool m_use_nra_model;
lbool run_nra(lp::explanation&);
void set_use_nra_model(bool m) { m_use_nra_model = m; }
public:
void add_monic(lpvar v, unsigned sz, lpvar const* vs);
solver(lp::lar_solver& s);
~solver();
nla_settings& settings();
void push();
void pop(unsigned scopes);
bool need_check();
lbool check(vector<lemma>&, lp::explanation& lp);
bool is_monic_var(lpvar) const;
bool influences_nl_var(lpvar) const;
std::ostream& display(std::ostream& out) const;
bool use_nra_model() const { return m_use_nra_model; }
core& get_core() { return *m_core; }
nlsat::anum_manager& am() { return m_nra.am(); }
nlsat::anum const& am_value(lp::var_index v) const {
SASSERT(use_nra_model());
return m_nra.value(v);
}
};
}