mirror of
https://github.com/Z3Prover/z3
synced 2025-04-29 20:05:51 +00:00
577 lines
27 KiB
C++
577 lines
27 KiB
C++
/*++
|
|
Copyright (c) 2020 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
euf_solver.h
|
|
|
|
Abstract:
|
|
|
|
Solver plugin for EUF
|
|
|
|
Author:
|
|
|
|
Nikolaj Bjorner (nbjorner) 2020-08-25
|
|
|
|
--*/
|
|
#pragma once
|
|
|
|
#include "util/scoped_ptr_vector.h"
|
|
#include "util/trail.h"
|
|
#include "ast/ast_translation.h"
|
|
#include "ast/ast_util.h"
|
|
#include "ast/euf/euf_egraph.h"
|
|
#include "ast/rewriter/th_rewriter.h"
|
|
#include "ast/converters/model_converter.h"
|
|
#include "sat/sat_extension.h"
|
|
#include "sat/smt/atom2bool_var.h"
|
|
#include "sat/smt/sat_th.h"
|
|
#include "sat/smt/euf_ackerman.h"
|
|
#include "sat/smt/user_solver.h"
|
|
#include "sat/smt/euf_relevancy.h"
|
|
#include "sat/smt/euf_proof_checker.h"
|
|
#include "smt/params/smt_params.h"
|
|
|
|
|
|
namespace euf {
|
|
typedef sat::literal literal;
|
|
typedef sat::ext_constraint_idx ext_constraint_idx;
|
|
typedef sat::ext_justification_idx ext_justification_idx;
|
|
typedef sat::literal_vector literal_vector;
|
|
typedef sat::bool_var bool_var;
|
|
|
|
class constraint {
|
|
public:
|
|
enum class kind_t { conflict, eq, lit };
|
|
private:
|
|
kind_t m_kind;
|
|
enode* m_node = nullptr;
|
|
public:
|
|
constraint(kind_t k) : m_kind(k) {}
|
|
constraint(enode* n): m_kind(kind_t::lit), m_node(n) {}
|
|
kind_t kind() const { return m_kind; }
|
|
enode* node() const { SASSERT(kind() == kind_t::lit); return m_node; }
|
|
static constraint& from_idx(size_t z) {
|
|
return *reinterpret_cast<constraint*>(sat::constraint_base::idx2mem(z));
|
|
}
|
|
size_t to_index() const { return sat::constraint_base::mem2base(this); }
|
|
};
|
|
|
|
class clause_pp {
|
|
solver& s;
|
|
sat::literal_vector const& lits;
|
|
public:
|
|
clause_pp(solver& s, sat::literal_vector const& lits):s(s), lits(lits) {}
|
|
std::ostream& display(std::ostream& out) const;
|
|
};
|
|
|
|
class eq_proof_hint : public th_proof_hint {
|
|
symbol th;
|
|
unsigned m_lit_head, m_lit_tail, m_cc_head, m_cc_tail;
|
|
public:
|
|
eq_proof_hint(symbol const& th, unsigned lh, unsigned lt, unsigned ch, unsigned ct):
|
|
th(th), m_lit_head(lh), m_lit_tail(lt), m_cc_head(ch), m_cc_tail(ct) {}
|
|
expr* get_hint(euf::solver& s) const override;
|
|
};
|
|
|
|
class smt_proof_hint : public th_proof_hint {
|
|
symbol m_name;
|
|
unsigned m_lit_head, m_lit_tail, m_eq_head, m_eq_tail, m_deq_head, m_deq_tail;
|
|
public:
|
|
smt_proof_hint(symbol const& n, unsigned lh, unsigned lt, unsigned ch, unsigned ct, unsigned dh, unsigned dt):
|
|
m_name(n), m_lit_head(lh), m_lit_tail(lt), m_eq_head(ch), m_eq_tail(ct), m_deq_head(dh), m_deq_tail(dt) {}
|
|
expr* get_hint(euf::solver& s) const override;
|
|
};
|
|
|
|
class solver : public sat::extension, public th_internalizer, public th_decompile, public sat::clause_eh {
|
|
typedef top_sort<euf::enode> deps_t;
|
|
friend class ackerman;
|
|
friend class eq_proof_hint;
|
|
friend class smt_proof_hint;
|
|
class user_sort;
|
|
struct stats {
|
|
unsigned m_ackerman;
|
|
unsigned m_final_checks;
|
|
stats() { reset(); }
|
|
void reset() { memset(this, 0, sizeof(*this)); }
|
|
};
|
|
struct scope {
|
|
unsigned m_var_lim;
|
|
scope(unsigned l) : m_var_lim(l) {}
|
|
};
|
|
|
|
struct local_search_config {
|
|
double cb = 0.0;
|
|
unsigned L = 20;
|
|
unsigned t = 45;
|
|
unsigned max_no_improve = 500000;
|
|
double sp = 0.0003;
|
|
};
|
|
|
|
|
|
size_t* to_ptr(sat::literal l) { return TAG(size_t*, reinterpret_cast<size_t*>((size_t)(l.index() << 4)), 1); }
|
|
size_t* to_ptr(size_t jst) { return TAG(size_t*, reinterpret_cast<size_t*>(jst), 2); }
|
|
bool is_literal(size_t* p) const { return GET_TAG(p) == 1; }
|
|
bool is_justification(size_t* p) const { return GET_TAG(p) == 2; }
|
|
sat::literal get_literal(size_t* p) const {
|
|
unsigned idx = static_cast<unsigned>(reinterpret_cast<size_t>(UNTAG(size_t*, p)));
|
|
return sat::to_literal(idx >> 4);
|
|
}
|
|
size_t get_justification(size_t* p) const {
|
|
return reinterpret_cast<size_t>(UNTAG(size_t*, p));
|
|
}
|
|
|
|
std::function<::solver*(void)> m_mk_solver;
|
|
user_propagator::on_clause_eh_t m_on_clause;
|
|
ast_manager& m;
|
|
sat::sat_internalizer& si;
|
|
relevancy m_relevancy;
|
|
smt_params m_config;
|
|
local_search_config m_ls_config;
|
|
euf::egraph m_egraph;
|
|
trail_stack m_trail;
|
|
stats m_stats;
|
|
th_rewriter m_rewriter;
|
|
func_decl_ref_vector m_unhandled_functions;
|
|
sat::lookahead* m_lookahead = nullptr;
|
|
ast_manager* m_to_m = nullptr;
|
|
sat::sat_internalizer* m_to_si;
|
|
scoped_ptr<euf::ackerman> m_ackerman;
|
|
void* m_on_clause_ctx = nullptr;
|
|
user_solver::solver* m_user_propagator = nullptr;
|
|
th_solver* m_qsolver = nullptr;
|
|
unsigned m_generation = 0;
|
|
std::string m_reason_unknown;
|
|
mutable ptr_vector<expr> m_todo;
|
|
|
|
ptr_vector<expr> m_bool_var2expr;
|
|
ptr_vector<size_t> m_explain;
|
|
euf::cc_justification m_explain_cc;
|
|
enode_pair_vector m_hint_eqs;
|
|
sat::literal_vector m_hint_lits;
|
|
unsigned m_num_scopes = 0;
|
|
unsigned_vector m_var_trail;
|
|
svector<scope> m_scopes;
|
|
scoped_ptr_vector<th_solver> m_solvers;
|
|
ptr_vector<th_solver> m_id2solver;
|
|
|
|
constraint* m_conflict = nullptr;
|
|
constraint* m_eq = nullptr;
|
|
|
|
// proofs
|
|
bool m_proof_initialized = false;
|
|
ast_pp_util m_clause_visitor;
|
|
bool m_display_all_decls = false;
|
|
smt_proof_checker m_smt_proof_checker;
|
|
|
|
typedef std::pair<expr*, expr*> expr_pair;
|
|
literal_vector m_proof_literals;
|
|
svector<expr_pair> m_proof_eqs, m_proof_deqs, m_expr_pairs;
|
|
unsigned m_lit_head = 0, m_lit_tail = 0, m_cc_head = 0, m_cc_tail = 0;
|
|
unsigned m_eq_head = 0, m_eq_tail = 0, m_deq_head = 0, m_deq_tail = 0;
|
|
symbol m_euf = symbol("euf");
|
|
symbol m_smt = symbol("smt");
|
|
expr_ref_vector m_clause;
|
|
expr_ref_vector m_expr_args;
|
|
|
|
|
|
// internalization
|
|
bool visit(expr* e) override;
|
|
bool visited(expr* e) override;
|
|
bool post_visit(expr* e, bool sign, bool root) override;
|
|
|
|
void add_distinct_axiom(app* e, euf::enode* const* args);
|
|
void add_not_distinct_axiom(app* e, euf::enode* const* args);
|
|
void axiomatize_basic(enode* n);
|
|
bool internalize_root(app* e, bool sign, ptr_vector<enode> const& args);
|
|
euf::enode* mk_true();
|
|
euf::enode* mk_false();
|
|
|
|
// replay
|
|
typedef std::tuple<expr_ref, unsigned, sat::bool_var> reinit_t;
|
|
vector<reinit_t> m_reinit;
|
|
|
|
void start_reinit(unsigned num_scopes);
|
|
void finish_reinit();
|
|
void relevancy_reinit(expr* e);
|
|
|
|
// extensions
|
|
th_solver* get_solver(family_id fid, func_decl* f);
|
|
th_solver* sort2solver(sort* s) { return get_solver(s->get_family_id(), nullptr); }
|
|
th_solver* func_decl2solver(func_decl* f) { return get_solver(f->get_family_id(), f); }
|
|
th_solver* quantifier2solver();
|
|
th_solver* expr2solver(expr* e);
|
|
th_solver* bool_var2solver(sat::bool_var v);
|
|
void add_solver(th_solver* th);
|
|
void init_ackerman();
|
|
|
|
// model building
|
|
expr_ref_vector m_values;
|
|
obj_map<expr, enode*> m_values2root;
|
|
model_ref m_qmodel;
|
|
bool include_func_interp(func_decl* f);
|
|
void register_macros(model& mdl);
|
|
void dependencies2values(user_sort& us, deps_t& deps, model_ref& mdl);
|
|
void collect_dependencies(user_sort& us, deps_t& deps);
|
|
void values2model(deps_t const& deps, model_ref& mdl);
|
|
void validate_model(model& mdl);
|
|
|
|
// solving
|
|
void propagate_literal(enode* n, enode* ante);
|
|
void propagate_th_eqs();
|
|
bool is_self_propagated(th_eq const& e);
|
|
void get_euf_antecedents(literal l, constraint& j, literal_vector& r, bool probing);
|
|
void new_diseq(enode* a, enode* b, literal lit);
|
|
bool merge_shared_bools();
|
|
|
|
// proofs
|
|
void log_antecedents(std::ostream& out, literal l, literal_vector const& r);
|
|
void log_antecedents(literal l, literal_vector const& r, th_proof_hint* hint);
|
|
void log_justification(literal l, th_explain const& jst);
|
|
void log_justifications(literal l, unsigned explain_size, bool is_euf);
|
|
void log_rup(literal l, literal_vector const& r);
|
|
|
|
|
|
eq_proof_hint* mk_hint(symbol const& th, literal lit);
|
|
|
|
|
|
|
|
void init_proof();
|
|
void on_clause(unsigned n, literal const* lits, sat::status st) override;
|
|
void on_lemma(unsigned n, literal const* lits, sat::status st);
|
|
void on_proof(unsigned n, literal const* lits, sat::status st);
|
|
void on_check(unsigned n, literal const* lits, sat::status st);
|
|
void on_clause_eh(unsigned n, literal const* lits, sat::status st);
|
|
std::ostream& display_literals(std::ostream& out, unsigned n, sat::literal const* lits);
|
|
void display_assume(std::ostream& out, unsigned n, literal const* lits);
|
|
void display_inferred(std::ostream& out, unsigned n, literal const* lits, expr* proof_hint);
|
|
void display_deleted(std::ostream& out, unsigned n, literal const* lits);
|
|
std::ostream& display_hint(std::ostream& out, expr* proof_hint);
|
|
app_ref status2proof_hint(sat::status st);
|
|
|
|
// relevancy
|
|
bool is_propagated(sat::literal lit);
|
|
// invariant
|
|
void check_eqc_bool_assignment() const;
|
|
void check_missing_bool_enode_propagation() const;
|
|
void check_missing_eq_propagation() const;
|
|
|
|
|
|
// diagnosis
|
|
std::ostream& display_justification_ptr(std::ostream& out, size_t* j) const;
|
|
|
|
// constraints
|
|
constraint& mk_constraint(constraint*& c, constraint::kind_t k);
|
|
constraint& conflict_constraint() { return mk_constraint(m_conflict, constraint::kind_t::conflict); }
|
|
constraint& eq_constraint() { return mk_constraint(m_eq, constraint::kind_t::eq); }
|
|
constraint& lit_constraint(enode* n);
|
|
|
|
// user propagator
|
|
void check_for_user_propagator() {
|
|
if (!m_user_propagator)
|
|
throw default_exception("user propagator must be initialized");
|
|
}
|
|
|
|
public:
|
|
solver(ast_manager& m, sat::sat_internalizer& si, params_ref const& p = params_ref());
|
|
|
|
~solver() override {
|
|
if (m_conflict) dealloc(sat::constraint_base::mem2base_ptr(m_conflict));
|
|
if (m_eq) dealloc(sat::constraint_base::mem2base_ptr(m_eq));
|
|
m_trail.reset();
|
|
}
|
|
|
|
struct scoped_set_translate {
|
|
solver& s;
|
|
scoped_set_translate(solver& s, ast_manager& m, sat::sat_internalizer& si) :
|
|
s(s) {
|
|
s.m_to_m = &m;
|
|
s.m_to_si = &si;
|
|
}
|
|
~scoped_set_translate() {
|
|
s.m_to_m = &s.m;
|
|
s.m_to_si = &s.si;
|
|
}
|
|
};
|
|
|
|
struct scoped_generation {
|
|
solver& s;
|
|
unsigned m_g;
|
|
scoped_generation(solver& s, unsigned g):
|
|
s(s),
|
|
m_g(s.m_generation) {
|
|
s.m_generation = g;
|
|
}
|
|
~scoped_generation() {
|
|
s.m_generation = m_g;
|
|
}
|
|
};
|
|
unsigned get_max_generation(expr* e) const;
|
|
|
|
// accessors
|
|
|
|
sat::sat_internalizer& get_si() { return si; }
|
|
ast_manager& get_manager() { return m; }
|
|
enode* get_enode(expr* e) const { return m_egraph.find(e); }
|
|
enode* bool_var2enode(sat::bool_var b) const {
|
|
expr* e = m_bool_var2expr.get(b, nullptr);
|
|
return e ? get_enode(e) : nullptr;
|
|
}
|
|
sat::literal expr2literal(expr* e) const { return enode2literal(get_enode(e)); }
|
|
sat::literal enode2literal(enode* n) const { return sat::literal(n->bool_var(), false); }
|
|
lbool value(enode* n) const { return s().value(enode2literal(n)); }
|
|
smt_params const& get_config() const { return m_config; }
|
|
region& get_region() { return m_trail.get_region(); }
|
|
egraph& get_egraph() { return m_egraph; }
|
|
th_solver* fid2solver(family_id fid) const { return m_id2solver.get(fid, nullptr); }
|
|
|
|
template <typename C>
|
|
void push(C const& c) { m_trail.push(c); }
|
|
template <typename V>
|
|
void push_vec(ptr_vector<V>& vec, V* val) {
|
|
vec.push_back(val);
|
|
push(push_back_trail< V*, false>(vec));
|
|
}
|
|
template <typename V>
|
|
void push_vec(svector<V>& vec, V val) {
|
|
vec.push_back(val);
|
|
push(push_back_trail< V, false>(vec));
|
|
}
|
|
trail_stack& get_trail_stack() { return m_trail; }
|
|
|
|
void updt_params(params_ref const& p);
|
|
void set_solver(sat::solver* s) override { m_solver = s; use_drat(); }
|
|
void set_lookahead(sat::lookahead* s) override { m_lookahead = s; }
|
|
void init_search() override;
|
|
double get_reward(literal l, ext_constraint_idx idx, sat::literal_occs_fun& occs) const override;
|
|
bool is_extended_binary(ext_justification_idx idx, literal_vector& r) override;
|
|
bool is_external(bool_var v) override;
|
|
bool propagated(literal l, ext_constraint_idx idx) override;
|
|
bool unit_propagate() override;
|
|
bool can_propagate() override;
|
|
bool should_research(sat::literal_vector const& core) override;
|
|
void add_assumptions(sat::literal_set& assumptions) override;
|
|
bool tracking_assumptions() override;
|
|
std::string reason_unknown() override { return m_reason_unknown; }
|
|
lbool local_search(bool_vector& phase) override;
|
|
|
|
void propagate(literal lit, ext_justification_idx idx);
|
|
bool propagate(enode* a, enode* b, ext_justification_idx idx);
|
|
void set_conflict(ext_justification_idx idx);
|
|
|
|
void propagate(literal lit, th_explain* p) { propagate(lit, p->to_index()); }
|
|
bool propagate(enode* a, enode* b, th_explain* p) { return propagate(a, b, p->to_index()); }
|
|
size_t* to_justification(sat::literal l) { return to_ptr(l); }
|
|
void set_conflict(th_explain* p) { set_conflict(p->to_index()); }
|
|
bool inconsistent() const { return s().inconsistent() || m_egraph.inconsistent(); }
|
|
|
|
bool set_root(literal l, literal r) override;
|
|
void flush_roots() override;
|
|
|
|
void get_antecedents(literal l, ext_justification_idx idx, literal_vector& r, bool probing) override;
|
|
void get_eq_antecedents(enode* a, enode* b, literal_vector& r);
|
|
void get_th_antecedents(literal l, th_explain& jst, literal_vector& r, bool probing);
|
|
void add_eq_antecedent(bool probing, enode* a, enode* b);
|
|
void explain_diseq(ptr_vector<size_t>& ex, cc_justification* cc, enode* a, enode* b);
|
|
void add_explain(size_t* p) { m_explain.push_back(p); }
|
|
void reset_explain() { m_explain.reset(); }
|
|
void set_eliminated(bool_var v) override;
|
|
bool decide(bool_var& var, lbool& phase) override;
|
|
bool get_case_split(bool_var& var, lbool& phase) override;
|
|
void asserted(literal l) override;
|
|
sat::check_result check() override;
|
|
lbool resolve_conflict() override;
|
|
void push() override;
|
|
void pop(unsigned n) override;
|
|
void user_push() override;
|
|
void user_pop(unsigned n) override;
|
|
void pre_simplify() override;
|
|
void simplify() override;
|
|
// have a way to replace l by r in all constraints
|
|
void clauses_modifed() override;
|
|
lbool get_phase(bool_var v) override;
|
|
std::ostream& display(std::ostream& out) const override;
|
|
std::ostream& display_justification(std::ostream& out, ext_justification_idx idx) const override;
|
|
std::ostream& display_constraint(std::ostream& out, ext_constraint_idx idx) const override;
|
|
euf::egraph::b_pp bpp(enode* n) const { return m_egraph.bpp(n); }
|
|
clause_pp pp(literal_vector const& lits) { return clause_pp(*this, lits); }
|
|
void collect_statistics(statistics& st) const override;
|
|
extension* copy(sat::solver* s) override;
|
|
enode* copy(solver& dst_ctx, enode* src_n);
|
|
void find_mutexes(literal_vector& lits, vector<literal_vector>& mutexes) override;
|
|
void gc() override;
|
|
void pop_reinit() override;
|
|
bool validate() override;
|
|
void init_use_list(sat::ext_use_list& ul) override;
|
|
bool is_blocked(literal l, ext_constraint_idx) override;
|
|
bool check_model(sat::model const& m) const override;
|
|
void gc_vars(unsigned num_vars) override;
|
|
bool resource_limits_exceeded() const { return false; } // TODO
|
|
|
|
|
|
// proof
|
|
bool use_drat() { return m_solver && s().get_config().m_drat && (init_proof(), true); }
|
|
sat::drat& get_drat() { return s().get_drat(); }
|
|
|
|
void set_tmp_bool_var(sat::bool_var b, expr* e);
|
|
bool visit_clause(std::ostream& out, unsigned n, literal const* lits);
|
|
void display_assert(std::ostream& out, unsigned n, literal const* lits);
|
|
void visit_expr(std::ostream& out, expr* e);
|
|
std::ostream& display_expr(std::ostream& out, expr* e);
|
|
void on_instantiation(unsigned n, sat::literal const* lits, unsigned k, euf::enode* const* bindings);
|
|
expr_ref_vector& expr_args() { m_expr_args.reset(); return m_expr_args; }
|
|
smt_proof_hint* mk_smt_hint(symbol const& n, literal_vector const& lits, enode_pair_vector const& eqs) {
|
|
return mk_smt_hint(n, lits.size(), lits.data(), eqs.size(), eqs.data());
|
|
}
|
|
smt_proof_hint* mk_smt_hint(symbol const& n, enode_pair_vector const& eqs) {
|
|
return mk_smt_hint(n, 0, nullptr, eqs.size(), eqs.data());
|
|
}
|
|
smt_proof_hint* mk_smt_hint(symbol const& n, literal_vector const& lits) {
|
|
return mk_smt_hint(n, lits.size(), lits.data(), 0, (expr_pair const*) nullptr);
|
|
}
|
|
smt_proof_hint* mk_smt_hint(symbol const& n, unsigned nl, literal const* lits, unsigned ne, expr_pair const* eqs, unsigned nd = 0, expr_pair const* deqs = nullptr);
|
|
smt_proof_hint* mk_smt_hint(symbol const& n, unsigned nl, literal const* lits, unsigned ne = 0, enode_pair const* eqs = nullptr);
|
|
smt_proof_hint* mk_smt_hint(symbol const& n, literal lit, unsigned ne, expr_pair const* eqs) { return mk_smt_hint(n, 1, &lit, ne, eqs); }
|
|
smt_proof_hint* mk_smt_hint(symbol const& n, literal lit) { return mk_smt_hint(n, 1, &lit, 0, (expr_pair const*)nullptr); }
|
|
smt_proof_hint* mk_smt_hint(symbol const& n, literal l1, literal l2) { literal ls[2] = {l1,l2}; return mk_smt_hint(n, 2, ls, 0, (expr_pair const*)nullptr); }
|
|
smt_proof_hint* mk_smt_hint(symbol const& n, literal lit, expr* a, expr* b) { expr_pair e(a, b); return mk_smt_hint(n, 1, &lit, 1, &e); }
|
|
smt_proof_hint* mk_smt_hint(symbol const& n, literal lit, enode* a, enode* b) { expr_pair e(a->get_expr(), b->get_expr()); return mk_smt_hint(n, 1, &lit, 1, &e); }
|
|
smt_proof_hint* mk_smt_prop_hint(symbol const& n, literal lit, expr* a, expr* b) { expr_pair e(a, b); return mk_smt_hint(n, 1, &lit, 0, nullptr, 1, &e); }
|
|
smt_proof_hint* mk_smt_prop_hint(symbol const& n, literal lit, enode* a, enode* b) { return mk_smt_prop_hint(n, lit, a->get_expr(), b->get_expr()); }
|
|
smt_proof_hint* mk_smt_hint(symbol const& n, enode* a, enode* b) { expr_pair e(a->get_expr(), b->get_expr()); return mk_smt_hint(n, 0, nullptr, 1, &e); }
|
|
smt_proof_hint* mk_smt_clause(symbol const& n, unsigned nl, literal const* lits);
|
|
th_proof_hint* mk_cc_proof_hint(sat::literal_vector const& ante, app* a, app* b);
|
|
th_proof_hint* mk_tc_proof_hint(sat::literal const* ternary_clause);
|
|
sat::status mk_tseitin_status(sat::literal a) { return mk_tseitin_status(1, &a); }
|
|
sat::status mk_tseitin_status(sat::literal a, sat::literal b);
|
|
sat::status mk_tseitin_status(unsigned n, sat::literal const* lits);
|
|
sat::status mk_distinct_status(sat::literal a) { return mk_distinct_status(1, &a); }
|
|
sat::status mk_distinct_status(sat::literal a, sat::literal b) { sat::literal lits[2] = { a, b }; return mk_distinct_status(2, lits); }
|
|
sat::status mk_distinct_status(sat::literal_vector const& lits) { return mk_distinct_status(lits.size(), lits.data()); }
|
|
sat::status mk_distinct_status(unsigned n, sat::literal const* lits);
|
|
|
|
scoped_ptr<std::ostream> m_proof_out;
|
|
|
|
// decompile
|
|
bool extract_pb(std::function<void(unsigned sz, literal const* c, unsigned k)>& card,
|
|
std::function<void(unsigned sz, literal const* c, unsigned const* coeffs, unsigned k)>& pb) override;
|
|
|
|
bool to_formulas(std::function<expr_ref(sat::literal)>& l2e, expr_ref_vector& fmls) override;
|
|
|
|
// internalize
|
|
sat::literal internalize(expr* e, bool sign, bool root) override;
|
|
void internalize(expr* e) override;
|
|
sat::literal mk_literal(expr* e);
|
|
void attach_th_var(enode* n, th_solver* th, theory_var v) { m_egraph.add_th_var(n, v, th->get_id()); }
|
|
void attach_node(euf::enode* n);
|
|
expr_ref mk_eq(expr* e1, expr* e2);
|
|
expr_ref mk_eq(euf::enode* n1, euf::enode* n2) { return mk_eq(n1->get_expr(), n2->get_expr()); }
|
|
euf::enode* e_internalize(expr* e);
|
|
euf::enode* mk_enode(expr* e, unsigned n, enode* const* args);
|
|
void set_bool_var2expr(sat::bool_var v, expr* e) { m_var_trail.push_back(v); m_bool_var2expr.setx(v, e, nullptr); }
|
|
expr* bool_var2expr(sat::bool_var v) const { return m_bool_var2expr.get(v, nullptr); }
|
|
expr_ref literal2expr(sat::literal lit) const { expr* e = bool_var2expr(lit.var()); return (e && lit.sign()) ? expr_ref(mk_not(m, e), m) : expr_ref(e, m); }
|
|
unsigned generation() const { return m_generation; }
|
|
|
|
sat::literal attach_lit(sat::literal lit, expr* e);
|
|
void unhandled_function(func_decl* f);
|
|
th_rewriter& get_rewriter() { return m_rewriter; }
|
|
void rewrite(expr_ref& e) { m_rewriter(e); }
|
|
bool is_shared(euf::enode* n) const;
|
|
bool is_beta_redex(euf::enode* p, euf::enode* n) const;
|
|
bool enable_ackerman_axioms(expr* n) const;
|
|
bool is_fixed(euf::enode* n, expr_ref& val, sat::literal_vector& explain);
|
|
|
|
// relevancy
|
|
|
|
bool relevancy_enabled() const { return m_relevancy.enabled(); }
|
|
void disable_relevancy(expr* e) { IF_VERBOSE(0, verbose_stream() << "disabling relevancy " << mk_pp(e, m) << "\n"); m_relevancy.set_enabled(false); }
|
|
void add_root(unsigned n, sat::literal const* lits) { m_relevancy.add_root(n, lits); }
|
|
void add_root(sat::literal_vector const& lits) { add_root(lits.size(), lits.data()); }
|
|
void add_root(sat::literal lit) { add_root(1, &lit); }
|
|
void add_root(sat::literal lit1, sat::literal lit2) { sat::literal lits[2] = { lit1, lit2, }; add_root(2, lits); }
|
|
void add_aux(sat::literal_vector const& lits) { add_aux(lits.size(), lits.data()); }
|
|
void add_aux(unsigned n, sat::literal const* lits) { m_relevancy.add_def(n, lits); }
|
|
void add_aux(sat::literal a) { sat::literal lits[1] = { a }; add_aux(1, lits); }
|
|
void add_aux(sat::literal a, sat::literal b) { sat::literal lits[2] = {a, b}; add_aux(2, lits); }
|
|
void add_aux(sat::literal a, sat::literal b, sat::literal c) { sat::literal lits[3] = { a, b, c }; add_aux(3, lits); }
|
|
void mark_relevant(sat::literal lit) { m_relevancy.mark_relevant(lit); }
|
|
bool is_relevant(enode* n) const { return m_relevancy.is_relevant(n); }
|
|
bool is_relevant(bool_var v) const;
|
|
bool is_relevant(sat::literal lit) const { return is_relevant(lit.var()); }
|
|
void relevant_eh(euf::enode* n);
|
|
|
|
relevancy& get_relevancy() { return m_relevancy; }
|
|
|
|
// model construction
|
|
void save_model(model_ref& mdl);
|
|
void update_model(model_ref& mdl, bool validate);
|
|
obj_map<expr, enode*> const& values2root();
|
|
void model_updated(model_ref& mdl);
|
|
expr* node2value(enode* n) const;
|
|
void display_validation_failure(std::ostream& out, model& mdl, enode* n);
|
|
|
|
// diagnostics
|
|
func_decl_ref_vector const& unhandled_functions() { return m_unhandled_functions; }
|
|
|
|
// clause tracing
|
|
void register_on_clause(
|
|
void* ctx,
|
|
user_propagator::on_clause_eh_t& on_clause);
|
|
|
|
// user propagator
|
|
void user_propagate_init(
|
|
void* ctx,
|
|
user_propagator::push_eh_t& push_eh,
|
|
user_propagator::pop_eh_t& pop_eh,
|
|
user_propagator::fresh_eh_t& fresh_eh);
|
|
bool watches_fixed(enode* n) const;
|
|
void assign_fixed(enode* n, expr* val, unsigned sz, literal const* explain);
|
|
void assign_fixed(enode* n, expr* val, literal_vector const& explain) { assign_fixed(n, val, explain.size(), explain.data()); }
|
|
void assign_fixed(enode* n, expr* val, literal explain) { assign_fixed(n, val, 1, &explain); }
|
|
|
|
void user_propagate_register_final(user_propagator::final_eh_t& final_eh) {
|
|
check_for_user_propagator();
|
|
m_user_propagator->register_final(final_eh);
|
|
}
|
|
void user_propagate_register_fixed(user_propagator::fixed_eh_t& fixed_eh) {
|
|
check_for_user_propagator();
|
|
m_user_propagator->register_fixed(fixed_eh);
|
|
}
|
|
void user_propagate_register_eq(user_propagator::eq_eh_t& eq_eh) {
|
|
check_for_user_propagator();
|
|
m_user_propagator->register_eq(eq_eh);
|
|
}
|
|
void user_propagate_register_diseq(user_propagator::eq_eh_t& diseq_eh) {
|
|
check_for_user_propagator();
|
|
m_user_propagator->register_diseq(diseq_eh);
|
|
}
|
|
void user_propagate_register_created(user_propagator::created_eh_t& ceh) {
|
|
check_for_user_propagator();
|
|
m_user_propagator->register_created(ceh);
|
|
}
|
|
void user_propagate_register_decide(user_propagator::decide_eh_t& ceh) {
|
|
check_for_user_propagator();
|
|
m_user_propagator->register_decide(ceh);
|
|
}
|
|
void user_propagate_register_expr(expr* e) {
|
|
check_for_user_propagator();
|
|
m_user_propagator->add_expr(e);
|
|
}
|
|
|
|
// solver factory
|
|
::solver* mk_solver() { return m_mk_solver(); }
|
|
void set_mk_solver(std::function<::solver*(void)>& mk) { m_mk_solver = mk; }
|
|
|
|
|
|
};
|
|
|
|
inline std::ostream& operator<<(std::ostream& out, clause_pp const& p) {
|
|
return p.display(out);
|
|
}
|
|
|
|
};
|
|
|
|
inline std::ostream& operator<<(std::ostream& out, euf::solver const& s) {
|
|
return s.display(out);
|
|
}
|