mirror of
https://github.com/Z3Prover/z3
synced 2025-04-13 20:38:43 +00:00
841 lines
27 KiB
C++
841 lines
27 KiB
C++
/*++
|
|
Copyright (c) 2017 Arie Gurfinkel
|
|
|
|
Module Name:
|
|
|
|
spacer_proof_utils.cpp
|
|
|
|
Abstract:
|
|
Utilities to traverse and manipulate proofs
|
|
|
|
Author:
|
|
Bernhard Gleiss
|
|
Arie Gurfinkel
|
|
|
|
Revision History:
|
|
|
|
--*/
|
|
|
|
#include "util/params.h"
|
|
#include "ast/ast_pp.h"
|
|
#include "ast/ast_util.h"
|
|
#include "ast/proofs/proof_checker.h"
|
|
#include "muz/base/dl_util.h"
|
|
#include "muz/spacer/spacer_iuc_proof.h"
|
|
|
|
#include "ast/proofs/proof_utils.h"
|
|
#include "muz/spacer/spacer_proof_utils.h"
|
|
#include "muz/spacer/spacer_util.h"
|
|
|
|
namespace spacer {
|
|
|
|
// arithmetic lemma recognizer
|
|
bool is_arith_lemma(ast_manager& m, proof* pr)
|
|
{
|
|
// arith lemmas: second parameter specifies exact type of lemma,
|
|
// could be "farkas", "triangle-eq", "eq-propagate",
|
|
// "assign-bounds", maybe also something else
|
|
if (pr->get_decl_kind() == PR_TH_LEMMA) {
|
|
func_decl* d = pr->get_decl();
|
|
symbol sym;
|
|
return d->get_num_parameters() >= 1 &&
|
|
d->get_parameter(0).is_symbol(sym) &&
|
|
sym == "arith";
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// farkas lemma recognizer
|
|
bool is_farkas_lemma(ast_manager& m, proof* pr)
|
|
{
|
|
if (pr->get_decl_kind() == PR_TH_LEMMA)
|
|
{
|
|
func_decl* d = pr->get_decl();
|
|
symbol sym;
|
|
return d->get_num_parameters() >= 2 &&
|
|
d->get_parameter(0).is_symbol(sym) && sym == "arith" &&
|
|
d->get_parameter(1).is_symbol(sym) && sym == "farkas";
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool is_assign_bounds_lemma(ast_manager &m, proof *pr) {
|
|
if (pr->get_decl_kind() == PR_TH_LEMMA)
|
|
{
|
|
func_decl* d = pr->get_decl();
|
|
symbol sym;
|
|
return d->get_num_parameters() >= 2 &&
|
|
d->get_parameter(0).is_symbol(sym) && sym == "arith" &&
|
|
d->get_parameter(1).is_symbol(sym) && sym == "assign-bounds";
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
|
|
class linear_combinator {
|
|
struct scaled_lit {
|
|
bool is_pos;
|
|
app *lit;
|
|
rational coeff;
|
|
scaled_lit(bool is_pos, app *lit, const rational &coeff) :
|
|
is_pos(is_pos), lit(lit), coeff(coeff) {}
|
|
};
|
|
ast_manager &m;
|
|
th_rewriter m_rw;
|
|
arith_util m_arith;
|
|
expr_ref m_sum;
|
|
bool m_is_strict;
|
|
rational m_lc;
|
|
vector<scaled_lit> m_lits;
|
|
public:
|
|
linear_combinator(ast_manager &m) : m(m), m_rw(m), m_arith(m),
|
|
m_sum(m), m_is_strict(false),
|
|
m_lc(1) {}
|
|
|
|
void add_lit(app* lit, rational const &coeff, bool is_pos = true) {
|
|
m_lits.push_back(scaled_lit(is_pos, lit, coeff));
|
|
}
|
|
|
|
void normalize_coeff() {
|
|
for (auto &lit : m_lits)
|
|
m_lc = lcm(m_lc, denominator(lit.coeff));
|
|
if (!m_lc.is_one()) {
|
|
for (auto &lit : m_lits)
|
|
lit.coeff *= m_lc;
|
|
}
|
|
}
|
|
|
|
rational const &lc() const {return m_lc;}
|
|
|
|
bool process_lit(scaled_lit &lit0) {
|
|
arith_util a(m);
|
|
app* lit = lit0.lit;
|
|
rational &coeff = lit0.coeff;
|
|
bool is_pos = lit0.is_pos;
|
|
|
|
|
|
if (m.is_not(lit)) {
|
|
lit = to_app(lit->get_arg(0));
|
|
is_pos = !is_pos;
|
|
}
|
|
if (!m_arith.is_le(lit) && !m_arith.is_lt(lit) &&
|
|
!m_arith.is_ge(lit) && !m_arith.is_gt(lit) && !m.is_eq(lit)) {
|
|
return false;
|
|
}
|
|
SASSERT(lit->get_num_args() == 2);
|
|
sort* s = m.get_sort(lit->get_arg(0));
|
|
bool is_int = m_arith.is_int(s);
|
|
if (!is_int && m_arith.is_int_expr(lit->get_arg(0))) {
|
|
is_int = true;
|
|
s = m_arith.mk_int();
|
|
}
|
|
|
|
if (!is_int && is_pos && (m_arith.is_gt(lit) || m_arith.is_lt(lit))) {
|
|
m_is_strict = true;
|
|
}
|
|
if (!is_int && !is_pos && (m_arith.is_ge(lit) || m_arith.is_le(lit))) {
|
|
m_is_strict = true;
|
|
}
|
|
|
|
|
|
SASSERT(m_arith.is_int(s) || m_arith.is_real(s));
|
|
expr_ref sign1(m), sign2(m), term(m);
|
|
sign1 = m_arith.mk_numeral(m.is_eq(lit)?coeff:abs(coeff), s);
|
|
sign2 = m_arith.mk_numeral(m.is_eq(lit)?-coeff:-abs(coeff), s);
|
|
if (!m_sum.get()) {
|
|
m_sum = m_arith.mk_numeral(rational(0), s);
|
|
}
|
|
|
|
expr* a0 = lit->get_arg(0);
|
|
expr* a1 = lit->get_arg(1);
|
|
|
|
if (is_pos && (m_arith.is_ge(lit) || m_arith.is_gt(lit))) {
|
|
std::swap(a0, a1);
|
|
}
|
|
if (!is_pos && (m_arith.is_le(lit) || m_arith.is_lt(lit))) {
|
|
std::swap(a0, a1);
|
|
}
|
|
|
|
//
|
|
// Multiplying by coefficients over strict
|
|
// and non-strict inequalities:
|
|
//
|
|
// (a <= b) * 2
|
|
// (a - b <= 0) * 2
|
|
// (2a - 2b <= 0)
|
|
|
|
// (a < b) * 2 <=>
|
|
// (a +1 <= b) * 2 <=>
|
|
// 2a + 2 <= 2b <=>
|
|
// 2a+2-2b <= 0
|
|
|
|
bool strict_ineq =
|
|
is_pos?(m_arith.is_gt(lit) || m_arith.is_lt(lit)):(m_arith.is_ge(lit) || m_arith.is_le(lit));
|
|
|
|
if (is_int && strict_ineq) {
|
|
m_sum = m_arith.mk_add(m_sum, sign1);
|
|
}
|
|
|
|
term = m_arith.mk_mul(sign1, a0);
|
|
m_sum = m_arith.mk_add(m_sum, term);
|
|
term = m_arith.mk_mul(sign2, a1);
|
|
m_sum = m_arith.mk_add(m_sum, term);
|
|
|
|
m_rw(m_sum);
|
|
return true;
|
|
}
|
|
|
|
expr_ref operator()(){
|
|
if (!m_sum) normalize_coeff();
|
|
m_sum.reset();
|
|
for (auto &lit : m_lits) {
|
|
if (!process_lit(lit)) return expr_ref(m);
|
|
}
|
|
return m_sum;
|
|
}
|
|
};
|
|
|
|
/*
|
|
* ====================================
|
|
* methods for transforming proofs
|
|
* ====================================
|
|
*/
|
|
|
|
void theory_axiom_reducer::reset() {
|
|
m_cache.reset();
|
|
m_pinned.reset();
|
|
}
|
|
|
|
static proof_ref mk_th_lemma(ast_manager &m, ptr_buffer<proof> const &parents,
|
|
unsigned num_params, parameter const *params) {
|
|
buffer<parameter> v;
|
|
for (unsigned i = 1; i < num_params; ++i)
|
|
v.push_back(params[i]);
|
|
|
|
SASSERT(params[0].is_symbol());
|
|
family_id tid = m.mk_family_id(params[0].get_symbol());
|
|
SASSERT(tid != null_family_id);
|
|
|
|
proof_ref pf(m);
|
|
pf = m.mk_th_lemma(tid, m.mk_false(),
|
|
parents.size(), parents.c_ptr(),
|
|
v.size(), v.c_ptr());
|
|
return pf;
|
|
}
|
|
|
|
static bool match_mul(expr *e, expr_ref &var, expr_ref &val, arith_util &a) {
|
|
expr *e1 = nullptr, *e2 = nullptr;
|
|
if (!a.is_mul(e, e1, e2)) {
|
|
if (a.is_numeral(e)) return false;
|
|
if (!var || var == e) {
|
|
var = e;
|
|
val = a.mk_numeral(rational(1), get_sort(e));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (!a.is_numeral(e1)) std::swap(e1, e2);
|
|
if (!a.is_numeral(e1)) return false;
|
|
|
|
// if variable is given, match it as well
|
|
if (!var || var == e2) {
|
|
var = e2;
|
|
val = e1;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static expr_ref get_coeff(expr *lit0, expr_ref &var) {
|
|
ast_manager &m = var.m();
|
|
arith_util a(m);
|
|
|
|
expr *lit = nullptr;
|
|
if (!m.is_not(lit0, lit)) lit = lit0;
|
|
|
|
expr *e1 = nullptr, *e2 = nullptr;
|
|
// assume e2 is numeral and ignore it
|
|
if ((a.is_le(lit, e1, e2) || a.is_lt(lit, e1, e2) ||
|
|
a.is_ge(lit, e1, e2) || a.is_gt(lit, e1, e2) ||
|
|
m.is_eq(lit, e1, e2))) {
|
|
if (a.is_numeral(e1)) std::swap(e1, e2);
|
|
}
|
|
else {
|
|
e1 = lit;
|
|
}
|
|
|
|
expr_ref val(m);
|
|
if (!a.is_add(e1)) {
|
|
if (match_mul(e1, var, val, a)) return val;
|
|
}
|
|
else {
|
|
for (auto *arg : *to_app(e1)) {
|
|
if (match_mul(arg, var, val, a)) return val;
|
|
}
|
|
}
|
|
return expr_ref(m);
|
|
}
|
|
|
|
// convert assign-bounds lemma to a farkas lemma by adding missing coeff
|
|
// assume that missing coeff is for premise at position 0
|
|
static proof_ref mk_fk_from_ab(ast_manager &m,
|
|
ptr_buffer<proof> const &parents,
|
|
unsigned num_params,
|
|
parameter const *params) {
|
|
SASSERT(num_params == parents.size() + 1 /* one param is missing */);
|
|
arith_util a(m);
|
|
th_rewriter rw(m);
|
|
|
|
// compute missing coefficient
|
|
linear_combinator lcb(m);
|
|
for (unsigned i = 1, sz = parents.size(); i < sz; ++i) {
|
|
app *p = to_app(m.get_fact(parents.get(i)));
|
|
rational const &r = params[i+1].get_rational();
|
|
lcb.add_lit(p, r);
|
|
}
|
|
|
|
expr_ref lit0(m);
|
|
lit0 = m.get_fact(parents.get(0));
|
|
// put lit0 into canonical form
|
|
rw(lit0);
|
|
TRACE("spacer.fkab",
|
|
tout << "lit0 is: " << lit0 << "\n"
|
|
<< "LCB is: " << lcb() << "\n";);
|
|
|
|
expr_ref var(m), val1(m), val2(m);
|
|
val1 = get_coeff(lit0, var);
|
|
val2 = get_coeff(lcb(), var);
|
|
TRACE("spacer.fkab",
|
|
tout << "var: " << var
|
|
<< " val1: " << val1 << " val2: " << val2 << "\n";);
|
|
|
|
rational rat1, rat2, coeff0;
|
|
CTRACE("spacer.fkab", !(val1 && val2),
|
|
tout << "Failed to match variables\n";);
|
|
if (val1 && val2 &&
|
|
a.is_numeral(val1, rat1) && a.is_numeral(val2, rat2)) {
|
|
coeff0 = abs(rat2/rat1);
|
|
coeff0 = coeff0 / lcb.lc();
|
|
TRACE("spacer.fkab", tout << "coeff0: " << coeff0 << "\n";);
|
|
}
|
|
else {
|
|
IF_VERBOSE(1, verbose_stream()
|
|
<< "\n\n\nFAILED TO FIND COEFFICIENT\n\n\n";);
|
|
TRACE("spacer.fkab", tout << "FAILED TO FIND COEFFICIENT\n";);
|
|
// failed to find a coefficient
|
|
return proof_ref(m);
|
|
}
|
|
|
|
|
|
buffer<parameter> v;
|
|
v.push_back(parameter(symbol("farkas")));
|
|
v.push_back(parameter(coeff0));
|
|
for (unsigned i = 2; i < num_params; ++i)
|
|
v.push_back(params[i]);
|
|
|
|
SASSERT(params[0].is_symbol());
|
|
family_id tid = m.mk_family_id(params[0].get_symbol());
|
|
SASSERT(tid != null_family_id);
|
|
|
|
proof_ref pf(m);
|
|
pf = m.mk_th_lemma(tid, m.mk_false(),
|
|
parents.size(), parents.c_ptr(),
|
|
v.size(), v.c_ptr());
|
|
|
|
SASSERT(is_arith_lemma(m, pf));
|
|
|
|
DEBUG_CODE(
|
|
proof_checker pc(m);
|
|
expr_ref_vector side(m);
|
|
ENSURE(pc.check(pf, side)););
|
|
return pf;
|
|
|
|
}
|
|
|
|
/// -- rewrite theory axioms into theory lemmas
|
|
proof_ref theory_axiom_reducer::reduce(proof* pr) {
|
|
proof_post_order pit(pr, m);
|
|
while (pit.hasNext()) {
|
|
proof* p = pit.next();
|
|
|
|
if (m.get_num_parents(p) == 0 && is_arith_lemma(m, p)) {
|
|
// we have an arith-theory-axiom and want to get rid of it
|
|
// we need to replace the axiom with
|
|
// (a) corresponding hypothesis,
|
|
// (b) a theory lemma, and
|
|
// (c) a lemma.
|
|
// Furthermore update data-structures
|
|
app *fact = to_app(m.get_fact(p));
|
|
ptr_buffer<expr> cls;
|
|
if (m.is_or(fact)) {
|
|
for (unsigned i = 0, sz = fact->get_num_args(); i < sz; ++i)
|
|
cls.push_back(fact->get_arg(i));
|
|
}
|
|
else
|
|
cls.push_back(fact);
|
|
|
|
// (a) create hypothesis
|
|
ptr_buffer<proof> hyps;
|
|
for (unsigned i = 0, sz = cls.size(); i < sz; ++i) {
|
|
expr *c;
|
|
expr_ref hyp_fact(m);
|
|
if (m.is_not(cls[i], c))
|
|
hyp_fact = c;
|
|
else
|
|
hyp_fact = m.mk_not (cls[i]);
|
|
|
|
proof* hyp = m.mk_hypothesis(hyp_fact);
|
|
m_pinned.push_back(hyp);
|
|
hyps.push_back(hyp);
|
|
}
|
|
|
|
// (b) Create a theory lemma
|
|
proof_ref th_lemma(m);
|
|
func_decl *d = p->get_decl();
|
|
if (is_assign_bounds_lemma(m, p)) {
|
|
|
|
th_lemma = mk_fk_from_ab(m, hyps,
|
|
d->get_num_parameters(),
|
|
d->get_parameters());
|
|
}
|
|
|
|
// fall back to th-lemma
|
|
if (!th_lemma) {
|
|
th_lemma = mk_th_lemma(m, hyps,
|
|
d->get_num_parameters(),
|
|
d->get_parameters());
|
|
}
|
|
m_pinned.push_back(th_lemma);
|
|
SASSERT(is_arith_lemma(m, th_lemma));
|
|
|
|
// (c) create lemma
|
|
proof* res = m.mk_lemma(th_lemma, fact);
|
|
m_pinned.push_back(res);
|
|
m_cache.insert(p, res);
|
|
|
|
SASSERT(m.get_fact(res) == m.get_fact(p));
|
|
}
|
|
else {
|
|
// proof is dirty, if a sub-proof of one of its premises
|
|
// has been transformed
|
|
bool dirty = false;
|
|
|
|
ptr_buffer<expr> args;
|
|
for (unsigned i = 0, sz = m.get_num_parents(p); i < sz; ++i) {
|
|
proof *pp, *tmp;
|
|
pp = m.get_parent(p, i);
|
|
VERIFY(m_cache.find(pp, tmp));
|
|
args.push_back(tmp);
|
|
dirty |= (pp != tmp);
|
|
}
|
|
// if not dirty just use the old step
|
|
if (!dirty) m_cache.insert(p, p);
|
|
// otherwise create new proof with the corresponding proofs
|
|
// of the premises
|
|
else {
|
|
if (m.has_fact(p)) args.push_back(m.get_fact(p));
|
|
|
|
SASSERT(p->get_decl()->get_arity() == args.size());
|
|
|
|
proof* res = m.mk_app(p->get_decl(),
|
|
args.size(), (expr * const*)args.c_ptr());
|
|
m_pinned.push_back(res);
|
|
m_cache.insert(p, res);
|
|
}
|
|
}
|
|
}
|
|
|
|
proof* res;
|
|
VERIFY(m_cache.find(pr,res));
|
|
DEBUG_CODE(
|
|
proof_checker pc(m);
|
|
expr_ref_vector side(m);
|
|
SASSERT(pc.check(res, side));
|
|
);
|
|
|
|
return proof_ref(res, m);
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* hypothesis_reducer */
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
proof_ref hypothesis_reducer::reduce(proof* pr) {
|
|
compute_hypsets(pr);
|
|
collect_units(pr);
|
|
|
|
proof_ref res(reduce_core(pr), m);
|
|
SASSERT(res);
|
|
reset();
|
|
|
|
DEBUG_CODE(proof_checker pc(m);
|
|
expr_ref_vector side(m);
|
|
SASSERT(pc.check(res, side)););
|
|
return res;
|
|
}
|
|
|
|
void hypothesis_reducer::reset() {
|
|
m_active_hyps.reset();
|
|
m_units.reset();
|
|
m_cache.reset();
|
|
for (auto t : m_pinned_active_hyps) dealloc(t);
|
|
m_pinned_active_hyps.reset();
|
|
m_pinned.reset();
|
|
m_hyp_mark.reset();
|
|
m_open_mark.reset();
|
|
m_visited.reset();
|
|
}
|
|
|
|
void hypothesis_reducer::compute_hypsets(proof *pr) {
|
|
ptr_buffer<proof> todo;
|
|
todo.push_back(pr);
|
|
|
|
while (!todo.empty()) {
|
|
proof* p = todo.back();
|
|
|
|
if (m_visited.is_marked(p)) {
|
|
todo.pop_back();
|
|
continue;
|
|
}
|
|
|
|
unsigned todo_sz = todo.size();
|
|
for (unsigned i = 0, sz = m.get_num_parents(p); i < sz; ++i) {
|
|
SASSERT(m.is_proof(p->get_arg(i)));
|
|
proof *parent = to_app(p->get_arg(i));
|
|
|
|
if (!m_visited.is_marked(parent))
|
|
todo.push_back(parent);
|
|
}
|
|
if (todo.size() > todo_sz) continue;
|
|
|
|
todo.pop_back();
|
|
|
|
m_visited.mark(p);
|
|
|
|
|
|
proof_ptr_vector* active_hyps = nullptr;
|
|
// fill both sets
|
|
if (m.is_hypothesis(p)) {
|
|
// create active_hyps-set for step p
|
|
proof_ptr_vector* active_hyps = alloc(proof_ptr_vector);
|
|
m_pinned_active_hyps.insert(active_hyps);
|
|
m_active_hyps.insert(p, active_hyps);
|
|
active_hyps->push_back(p);
|
|
m_open_mark.mark(p);
|
|
m_hyp_mark.mark(m.get_fact(p));
|
|
continue;
|
|
}
|
|
|
|
ast_fast_mark1 seen;
|
|
|
|
active_hyps = alloc(proof_ptr_vector);
|
|
for (unsigned i = 0, sz = m.get_num_parents(p); i < sz; ++i) {
|
|
proof* parent = m.get_parent(p, i);
|
|
// lemmas clear all hypotheses above them
|
|
if (m.is_lemma(p)) continue;
|
|
for (auto *x : *m_active_hyps.find(parent)) {
|
|
if (!seen.is_marked(x)) {
|
|
seen.mark(x);
|
|
active_hyps->push_back(x);
|
|
m_open_mark.mark(p);
|
|
}
|
|
}
|
|
}
|
|
if (active_hyps->empty()) {
|
|
dealloc(active_hyps);
|
|
m_active_hyps.insert(p, &m_empty_vector);
|
|
}
|
|
else {
|
|
m_pinned_active_hyps.push_back(active_hyps);
|
|
m_active_hyps.insert(p, active_hyps);
|
|
}
|
|
}
|
|
}
|
|
|
|
// collect all units that are hyp-free and are used as hypotheses somewhere
|
|
// requires that m_active_hyps has been computed
|
|
void hypothesis_reducer::collect_units(proof* pr) {
|
|
|
|
proof_post_order pit(pr, m);
|
|
while (pit.hasNext()) {
|
|
proof* p = pit.next();
|
|
if (!m.is_hypothesis(p)) {
|
|
// collect units that are hyp-free and are used as
|
|
// hypotheses in the proof pr
|
|
if (!m_open_mark.is_marked(p) && m.has_fact(p) &&
|
|
m_hyp_mark.is_marked(m.get_fact(p)))
|
|
m_units.insert(m.get_fact(p), p);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
\brief returns true if p is an ancestor of q
|
|
*/
|
|
bool hypothesis_reducer::is_ancestor(proof *p, proof *q) {
|
|
if (p == q) return true;
|
|
ptr_vector<proof> todo;
|
|
todo.push_back(q);
|
|
|
|
expr_mark visited;
|
|
while (!todo.empty()) {
|
|
proof *cur;
|
|
cur = todo.back();
|
|
todo.pop_back();
|
|
|
|
if (visited.is_marked(cur)) continue;
|
|
|
|
if (cur == p) return true;
|
|
visited.mark(cur);
|
|
|
|
for (unsigned i = 0, sz = m.get_num_parents(cur); i < sz; ++i) {
|
|
todo.push_back(m.get_parent(cur, i));
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
proof* hypothesis_reducer::reduce_core(proof* pf) {
|
|
SASSERT(m.is_false(m.get_fact(pf)));
|
|
|
|
proof *res = NULL;
|
|
|
|
ptr_vector<proof> todo;
|
|
todo.push_back(pf);
|
|
ptr_buffer<proof> args;
|
|
bool dirty = false;
|
|
|
|
while (true) {
|
|
proof *p, *tmp, *pp;
|
|
unsigned todo_sz;
|
|
|
|
p = todo.back();
|
|
if (m_cache.find(p, tmp)) {
|
|
todo.pop_back();
|
|
continue;
|
|
}
|
|
|
|
dirty = false;
|
|
args.reset();
|
|
todo_sz = todo.size();
|
|
for (unsigned i = 0, sz = m.get_num_parents(p); i < sz; ++i) {
|
|
pp = m.get_parent(p, i);
|
|
if (m_cache.find(pp, tmp)) {
|
|
args.push_back(tmp);
|
|
dirty |= pp != tmp;
|
|
} else {
|
|
todo.push_back(pp);
|
|
}
|
|
}
|
|
|
|
if (todo_sz < todo.size()) continue;
|
|
|
|
todo.pop_back();
|
|
|
|
// transform the current proof node
|
|
|
|
if (m.is_hypothesis(p)) {
|
|
// if possible, replace a hypothesis by a unit derivation
|
|
if (m_units.find(m.get_fact(p), tmp)) {
|
|
// use already transformed proof of the unit if it is available
|
|
proof* proof_of_unit;
|
|
if (!m_cache.find(tmp, proof_of_unit)) {
|
|
proof_of_unit = tmp;
|
|
}
|
|
|
|
// make sure hypsets for the unit are computed
|
|
// AG: is this needed?
|
|
compute_hypsets(proof_of_unit);
|
|
|
|
// if the transformation doesn't create a cycle, perform it
|
|
if (!is_ancestor(p, proof_of_unit)) {
|
|
res = proof_of_unit;
|
|
}
|
|
else {
|
|
// -- failed to transform the proof, perhaps bad
|
|
// -- choice of the proof of unit
|
|
res = p;
|
|
}
|
|
}
|
|
else {
|
|
// -- no unit found to replace the hypothesis
|
|
res = p;
|
|
}
|
|
}
|
|
|
|
else if (!dirty) {res = p;}
|
|
|
|
else if (m.is_lemma(p)) {
|
|
// lemma: reduce the premise; remove reduced consequences
|
|
// from conclusion
|
|
SASSERT(args.size() == 1);
|
|
res = mk_lemma_core(args[0], m.get_fact(p));
|
|
// -- re-compute hypsets
|
|
compute_hypsets(res);
|
|
}
|
|
else if (m.is_unit_resolution(p)) {
|
|
// unit: reduce untis; reduce the first premise; rebuild
|
|
// unit resolution
|
|
res = mk_unit_resolution_core(p, args);
|
|
// -- re-compute hypsets
|
|
compute_hypsets(res);
|
|
}
|
|
else {
|
|
res = mk_proof_core(p, args);
|
|
// -- re-compute hypsets
|
|
compute_hypsets(res);
|
|
}
|
|
|
|
SASSERT(res);
|
|
m_cache.insert(p, res);
|
|
|
|
// bail out as soon as found a sub-proof of false
|
|
if (!m_open_mark.is_marked(res) && m.has_fact(res) && m.is_false(m.get_fact(res)))
|
|
return res;
|
|
}
|
|
UNREACHABLE();
|
|
return nullptr;
|
|
}
|
|
|
|
proof* hypothesis_reducer::mk_lemma_core(proof* premise, expr *fact) {
|
|
SASSERT(m.is_false(m.get_fact(premise)));
|
|
SASSERT(m_active_hyps.contains(premise));
|
|
|
|
proof_ptr_vector* active_hyps = m_active_hyps.find(premise);
|
|
|
|
// if there is no active hypothesis return the premise
|
|
if (!m_open_mark.is_marked(premise)) {
|
|
// XXX just in case premise might go away
|
|
m_pinned.push_back(premise);
|
|
return premise;
|
|
}
|
|
|
|
// add some stability
|
|
std::stable_sort(active_hyps->begin(), active_hyps->end(), ast_lt_proc());
|
|
// otherwise, build a disjunction of the negated active hypotheses
|
|
// and add a lemma proof step
|
|
expr_ref_buffer args(m);
|
|
for (auto hyp : *active_hyps) {
|
|
expr *hyp_fact, *t;
|
|
hyp_fact = m.get_fact(hyp);
|
|
if (m.is_not(hyp_fact, t))
|
|
args.push_back(t);
|
|
else
|
|
args.push_back(m.mk_not(hyp_fact));
|
|
}
|
|
|
|
expr_ref lemma(m);
|
|
lemma = mk_or(m, args.size(), args.c_ptr());
|
|
|
|
proof* res;
|
|
res = m.mk_lemma(premise, lemma);
|
|
m_pinned.push_back(res);
|
|
return res;
|
|
}
|
|
|
|
proof* hypothesis_reducer::mk_unit_resolution_core(proof *ures,
|
|
ptr_buffer<proof>& args) {
|
|
// if any literal is false, we don't need a unit resolution step
|
|
// This can be the case due to some previous transformations
|
|
for (unsigned i = 1, sz = args.size(); i < sz; ++i) {
|
|
if (m.is_false(m.get_fact(args[i]))) {
|
|
// XXX pin just in case
|
|
m_pinned.push_back(args[i]);
|
|
return args[i];
|
|
}
|
|
}
|
|
|
|
proof* arg0 = args[0];
|
|
app *fact0 = to_app(m.get_fact(arg0));
|
|
|
|
|
|
ptr_buffer<proof> pf_args;
|
|
ptr_buffer<expr> pf_fact;
|
|
pf_args.push_back(arg0);
|
|
|
|
// compute literals to be resolved
|
|
ptr_buffer<expr> lits;
|
|
|
|
// fact0 is a literal whenever the original resolution was a
|
|
// binary resolution to an empty clause
|
|
if (m.get_num_parents(ures) == 2 && m.is_false(m.get_fact(ures))) {
|
|
lits.push_back(fact0);
|
|
}
|
|
// fact0 is a literal unless it is a dijsunction
|
|
else if (!m.is_or(fact0)) {
|
|
lits.push_back(fact0);
|
|
}
|
|
// fact0 is a literal only if it appears as a literal in the
|
|
// original resolution
|
|
else {
|
|
lits.reset();
|
|
app* ures_fact = to_app(m.get_fact(m.get_parent(ures, 0)));
|
|
for (unsigned i = 0, sz = ures_fact->get_num_args(); i < sz; ++i) {
|
|
if (ures_fact->get_arg(i) == fact0) {
|
|
lits.push_back(fact0);
|
|
break;
|
|
}
|
|
}
|
|
if (lits.empty()) {
|
|
lits.append(fact0->get_num_args(), fact0->get_args());
|
|
}
|
|
|
|
}
|
|
|
|
// -- find all literals that are resolved on
|
|
for (unsigned i = 0, sz = lits.size(); i < sz; ++i) {
|
|
bool found = false;
|
|
for (unsigned j = 1; j < args.size(); ++j) {
|
|
if (m.is_complement(lits.get(i), m.get_fact(args[j]))) {
|
|
found = true;
|
|
pf_args.push_back(args[j]);
|
|
break;
|
|
}
|
|
}
|
|
if (!found) {pf_fact.push_back(lits.get(i));}
|
|
}
|
|
|
|
// unit resolution got reduced to noop
|
|
if (pf_args.size() == 1) {
|
|
// XXX pin just in case
|
|
m_pinned.push_back(arg0);
|
|
|
|
return arg0;
|
|
}
|
|
|
|
// make unit resolution proof step
|
|
// expr_ref tmp(m);
|
|
// tmp = mk_or(m, pf_fact.size(), pf_fact.c_ptr());
|
|
// proof* res = m.mk_unit_resolution(pf_args.size(), pf_args.c_ptr(), tmp);
|
|
proof *res = m.mk_unit_resolution(pf_args.size(), pf_args.c_ptr());
|
|
m_pinned.push_back(res);
|
|
|
|
return res;
|
|
}
|
|
|
|
proof* hypothesis_reducer::mk_proof_core(proof* old, ptr_buffer<proof>& args) {
|
|
// if any of the literals are false, we don't need a step
|
|
for (unsigned i = 0; i < args.size(); ++i) {
|
|
if (m.is_false(m.get_fact(args[i]))) {
|
|
// XXX just in case
|
|
m_pinned.push_back(args[i]);
|
|
return args[i];
|
|
}
|
|
}
|
|
|
|
// otherwise build step
|
|
// BUG: I guess this doesn't work with quantifiers (since they are no apps)
|
|
args.push_back(to_app(m.get_fact(old)));
|
|
|
|
SASSERT(old->get_decl()->get_arity() == args.size());
|
|
|
|
proof* res = m.mk_app(old->get_decl(), args.size(),
|
|
(expr * const*)args.c_ptr());
|
|
m_pinned.push_back(res);
|
|
return res;
|
|
}
|
|
|
|
};
|