3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-13 20:38:43 +00:00
z3/src/opt/maxres.cpp
Nikolaj Bjorner 39414d8b8d testing inc_sat
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2014-07-31 22:29:47 -07:00

308 lines
8.9 KiB
C++

/*++
Copyright (c) 2014 Microsoft Corporation
Module Name:
maxsres.cpp
Abstract:
MaxRes (weighted) max-sat algorithm by Nina and Bacchus, AAAI 2014.
Author:
Nikolaj Bjorner (nbjorner) 2014-20-7
Notes:
--*/
#include "solver.h"
#include "maxsmt.h"
#include "maxres.h"
#include "ast_pp.h"
#include "mus.h"
using namespace opt;
class maxres : public maxsmt_solver_base {
struct info {
app* m_cls;
rational m_weight;
info(app* cls, rational const& w):
m_cls(cls), m_weight(w) {}
info(): m_cls(0) {}
};
expr_ref_vector m_B;
expr_ref_vector m_asms;
obj_map<expr, info> m_asm2info;
ptr_vector<expr> m_new_core;
mus m_mus;
expr_ref_vector m_trail;
public:
maxres(ast_manager& m, opt_solver* s, params_ref& p,
vector<rational> const& ws, expr_ref_vector const& soft):
maxsmt_solver_base(s, m, p, ws, soft),
m_B(m), m_asms(m),
m_mus(m_s, m),
m_trail(m)
{
}
virtual ~maxres() {}
bool is_literal(expr* l) {
return
is_uninterp_const(l) ||
(m.is_not(l, l) && is_uninterp_const(l));
}
void add_soft(expr* e, rational const& w) {
TRACE("opt", tout << mk_pp(e, m) << "\n";);
expr_ref asum(m), fml(m);
app_ref cls(m);
cls = mk_cls(e);
m_trail.push_back(cls);
if (is_literal(e)) {
asum = e;
}
else {
asum = mk_fresh_bool("soft");
fml = m.mk_iff(asum, e);
m_s->assert_expr(fml);
}
new_assumption(asum, cls, w);
m_upper += w;
}
void new_assumption(expr* e, app* cls, rational const& w) {
TRACE("opt", tout << "insert: " << mk_pp(e, m) << " : " << w << "\n";);
info inf(cls, w);
m_asm2info.insert(e, inf);
m_asms.push_back(e);
m_trail.push_back(e);
}
lbool operator()() {
expr_ref fml(m);
ptr_vector<expr> core;
solver::scoped_push _sc(*m_s.get());
init();
init_local();
enable_bvsat();
while (true) {
TRACE("opt",
display_vec(tout, m_asms.size(), m_asms.c_ptr());
m_s->display(tout);
tout << "\n";
display(tout);
);
lbool is_sat = m_s->check_sat(m_asms.size(), m_asms.c_ptr());
if (m_cancel) {
return l_undef;
}
switch (is_sat) {
case l_true:
m_s->get_model(m_model);
for (unsigned i = 0; i < m_soft.size(); ++i) {
expr_ref tmp(m);
VERIFY(m_model->eval(m_soft[i].get(), tmp));
m_assignment[i] = m.is_true(tmp);
}
m_upper = m_lower;
return l_true;
case l_undef:
return l_undef;
default:
core.reset();
m_s->get_unsat_core(core);
TRACE("opt", display_vec(tout << "core: ", core.size(), core.c_ptr()););
SASSERT(!core.empty());
is_sat = minimize_core(core);
SASSERT(!core.empty());
if (core.empty()) {
return l_false;
}
if (is_sat != l_true) {
return is_sat;
}
remove_core(core);
rational w = split_core(core);
TRACE("opt", display_vec(tout << "minimized core: ", core.size(), core.c_ptr()););
max_resolve(core, w);
fml = m.mk_not(m.mk_and(m_B.size(), m_B.c_ptr()));
m_s->assert_expr(fml);
m_lower += w;
break;
}
IF_VERBOSE(1, verbose_stream() << "(opt.max_res [" << m_lower << ":" << m_upper << "])\n";);
}
return l_true;
}
lbool minimize_core(ptr_vector<expr>& core) {
m_mus.reset();
for (unsigned i = 0; i < core.size(); ++i) {
app* cls = get_clause(core[i]);
SASSERT(cls);
SASSERT(m.is_or(cls));
m_mus.add_soft(core[i], cls->get_num_args(), cls->get_args());
}
unsigned_vector mus_idx;
lbool is_sat = m_mus.get_mus(mus_idx);
if (is_sat != l_true) {
return is_sat;
}
m_new_core.reset();
for (unsigned i = 0; i < mus_idx.size(); ++i) {
m_new_core.push_back(core[mus_idx[i]]);
}
core.reset();
core.append(m_new_core);
return l_true;
}
rational get_weight(expr* e) {
return m_asm2info.find(e).m_weight;
}
app* get_clause(expr* e) {
return m_asm2info.find(e).m_cls;
}
rational split_core(ptr_vector<expr> const& core) {
// find the minimal weight:
SASSERT(!core.empty());
rational w = get_weight(core[0]);
for (unsigned i = 1; i < core.size(); ++i) {
rational w2 = get_weight(core[i]);
if (w2 < w) {
w = w2;
}
}
// add fresh soft clauses for weights that are above w.
for (unsigned i = 0; i < core.size(); ++i) {
rational w2 = get_weight(core[i]);
if (w2 > w) {
rational w3 = w2 - w;
new_assumption(core[i], get_clause(core[i]), w3);
}
}
return w;
}
void display_vec(std::ostream& out, unsigned sz, expr* const* args) {
for (unsigned i = 0; i < sz; ++i) {
out << mk_pp(args[i], m) << " : " << get_weight(args[i]) << " ";
}
out << "\n";
}
void display(std::ostream& out) {
for (unsigned i = 0; i < m_asms.size(); ++i) {
expr* a = m_asms[i].get();
out << mk_pp(a, m) << " : " << get_weight(a) << "\n";
}
}
void max_resolve(ptr_vector<expr>& core, rational const& w) {
SASSERT(!core.empty());
expr_ref fml(m), asum(m);
app_ref cls(m), d(m);
m_B.reset();
m_B.append(core.size(), core.c_ptr());
d = m.mk_true();
//
// d_0 := true
// d_i := b_{i-1} and d_{i-1} for i = 1...sz-1
// soft (b_i or !d_i)
// == (b_i or !(!b_{i-1} or d_{i-1}))
// == (b_i or b_0 & b_1 & ... & b_{i-1})
//
// Soft constraint is satisfied if previous soft constraint
// holds or if it is the first soft constraint to fail.
//
// Soundness of this rule can be established using MaxRes
//
for (unsigned i = 1; i < core.size(); ++i) {
expr* b_i = m_B[i-1].get();
expr* b_i1 = m_B[i].get();
d = m.mk_and(b_i, d);
asum = mk_fresh_bool("a");
cls = m.mk_or(b_i1, d);
fml = m.mk_iff(asum, cls);
cls = mk_cls(cls);
m_trail.push_back(cls);
new_assumption(asum, cls, w);
m_s->assert_expr(fml);
}
}
app_ref mk_cls(expr* e) {
expr_ref_vector disj(m), todo(m);
expr_ref f(m);
app_ref result(m);
expr* e1, *e2;
todo.push_back(e);
while (!todo.empty()) {
f = todo.back();
todo.pop_back();
if (m.is_implies(f, e1, e2)) {
todo.push_back(m.mk_not(e1));
todo.push_back(e2);
}
else if (m.is_not(f, e1) && m.is_not(e1, e2)) {
todo.push_back(e2);
}
else if (m.is_or(f)) {
todo.append(to_app(f)->get_num_args(), to_app(f)->get_args());
}
else if (m.is_not(f, e1) && m.is_and(e1)) {
for (unsigned i = 0; i < to_app(e1)->get_num_args(); ++i) {
todo.push_back(m.mk_not(to_app(e1)->get_arg(i)));
}
}
else {
disj.push_back(f);
}
}
result = m.mk_or(disj.size(), disj.c_ptr());
return result;
}
void remove_core(ptr_vector<expr> const& core) {
for (unsigned i = 0; i < m_asms.size(); ++i) {
if (core.contains(m_asms[i].get())) {
m_asms[i] = m_asms.back();
m_asms.pop_back();
--i;
}
}
}
virtual void set_cancel(bool f) {
maxsmt_solver_base::set_cancel(f);
m_mus.set_cancel(f);
}
void init_local() {
m_upper.reset();
m_lower.reset();
m_asm2info.reset();
m_trail.reset();
for (unsigned i = 0; i < m_soft.size(); ++i) {
add_soft(m_soft[i].get(), m_weights[i]);
}
}
};
opt::maxsmt_solver_base* opt::mk_maxres(ast_manager& m, opt_solver* s, params_ref& p,
vector<rational> const& ws, expr_ref_vector const& soft) {
return alloc(maxres, m, s, p, ws, soft);
}