3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2026-02-22 16:27:37 +00:00
z3/src/test/finite_set.cpp
Copilot bfe6670b73
Fix finite_set sort cardinality computation for finite base sorts (#7997)
* Initial plan

* Implement cardinality computation for finite_set sorts

- Modified mk_sort in finite_set_decl_plugin.cpp to compute 2^|s| for finite base sorts
- If base sort size > 30, mark finite_set sort as very_big
- Added comprehensive tests to verify sort size calculations
- All tests pass successfully

Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>

* Update finite_set_decl_plugin.cpp

* Fix unit tests for infinite base sorts

Updated test to check is_infinite() instead of is_very_big() for FiniteSet(Int) since infinite element sorts now result in infinite FiniteSet sorts (not very_big). Also updated comment to clarify the behavior.

Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>

---------

Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>
Co-authored-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2025-10-23 17:30:17 +02:00

286 lines
10 KiB
C++

/*++
Copyright (c) 2025 Microsoft Corporation
Module Name:
tst_finite_set.cpp
Abstract:
Test finite sets decl plugin
Author:
GitHub Copilot Agent 2025
Revision History:
--*/
#include "ast/ast.h"
#include "ast/finite_set_decl_plugin.h"
#include "ast/reg_decl_plugins.h"
#include "ast/arith_decl_plugin.h"
#include "ast/array_decl_plugin.h"
static void tst_finite_set_basic() {
ast_manager m;
reg_decl_plugins(m);
finite_set_util fsets(m);
arith_util arith(m);
// Test creating a finite set sort
sort_ref int_sort(arith.mk_int(), m);
parameter param(int_sort.get());
sort_ref finite_set_int(m.mk_sort(fsets.get_family_id(), FINITE_SET_SORT, 1, &param), m);
ENSURE(fsets.is_finite_set(finite_set_int.get()));
// Test creating empty set
app_ref empty_set(fsets.mk_empty(finite_set_int), m);
ENSURE(fsets.is_empty(empty_set.get()));
ENSURE(empty_set->get_sort() == finite_set_int.get());
// Test set.singleton
expr_ref five(arith.mk_int(5), m);
app_ref singleton_set(fsets.mk_singleton(five), m);
ENSURE(fsets.is_singleton(singleton_set.get()));
ENSURE(singleton_set->get_sort() == finite_set_int.get());
// Test set.range
expr_ref zero(arith.mk_int(0), m);
expr_ref ten(arith.mk_int(10), m);
app_ref range_set(fsets.mk_range(zero, ten), m);
ENSURE(fsets.is_range(range_set.get()));
ENSURE(range_set->get_sort() == finite_set_int.get());
// Test set.union
app_ref union_set(fsets.mk_union(empty_set, range_set), m);
ENSURE(fsets.is_union(union_set.get()));
ENSURE(union_set->get_sort() == finite_set_int.get());
// Test set.intersect
app_ref intersect_set(fsets.mk_intersect(range_set, range_set), m);
ENSURE(fsets.is_intersect(intersect_set.get()));
ENSURE(intersect_set->get_sort() == finite_set_int.get());
// Test set.difference
app_ref diff_set(fsets.mk_difference(range_set, empty_set), m);
ENSURE(fsets.is_difference(diff_set.get()));
ENSURE(diff_set->get_sort() == finite_set_int.get());
// Test set.in
app_ref in_expr(fsets.mk_in(five, range_set), m);
ENSURE(fsets.is_in(in_expr.get()));
ENSURE(m.is_bool(in_expr->get_sort()));
// Test set.size
app_ref size_expr(fsets.mk_size(range_set), m);
ENSURE(fsets.is_size(size_expr.get()));
ENSURE(arith.is_int(size_expr->get_sort()));
// Test set.subset
app_ref subset_expr(fsets.mk_subset(empty_set, range_set), m);
ENSURE(fsets.is_subset(subset_expr.get()));
ENSURE(m.is_bool(subset_expr->get_sort()));
}
static void tst_finite_set_map_filter() {
ast_manager m;
reg_decl_plugins(m);
finite_set_util fsets(m);
arith_util arith(m);
array_util autil(m);
// Create Int and Bool sorts
sort_ref int_sort(arith.mk_int(), m);
sort_ref bool_sort(m.mk_bool_sort(), m);
// Create finite set sorts
parameter int_param(int_sort.get());
sort_ref finite_set_int(m.mk_sort(fsets.get_family_id(), FINITE_SET_SORT, 1, &int_param), m);
// Create Array (Int Int) sort for map
sort_ref arr_int_int(autil.mk_array_sort(int_sort, int_sort), m);
// Create a const array (conceptually represents the function)
app_ref arr_map(autil.mk_const_array(arr_int_int, arith.mk_int(42)), m);
// Create a set and test map
expr_ref zero(arith.mk_int(0), m);
expr_ref ten(arith.mk_int(10), m);
app_ref range_set(fsets.mk_range(zero, ten), m);
app_ref mapped_set(fsets.mk_map(arr_map, range_set), m);
ENSURE(fsets.is_map(mapped_set.get()));
ENSURE(fsets.is_finite_set(mapped_set->get_sort()));
// Create Array (Int Bool) sort for filter
sort_ref arr_int_bool(autil.mk_array_sort(int_sort, bool_sort), m);
// Create a const array for filter (conceptually represents predicate)
app_ref arr_filter(autil.mk_const_array(arr_int_bool, m.mk_true()), m);
app_ref filtered_set(fsets.mk_filter(arr_filter, range_set), m);
ENSURE(fsets.is_filter(filtered_set.get()));
ENSURE(filtered_set->get_sort() == finite_set_int.get());
}
static void tst_finite_set_is_value() {
ast_manager m;
reg_decl_plugins(m);
finite_set_util fsets(m);
arith_util arith(m);
finite_set_decl_plugin* plugin = static_cast<finite_set_decl_plugin*>(m.get_plugin(fsets.get_family_id()));
// Create Int sort and finite set sort
// Test with Int sort (should be fully interpreted)
sort_ref int_sort(arith.mk_int(), m);
parameter int_param(int_sort.get());
sort_ref finite_set_int(m.mk_sort(fsets.get_family_id(), FINITE_SET_SORT, 1, &int_param), m);
// Test 1: Empty set is a value
app_ref empty_set(fsets.mk_empty(finite_set_int), m);
ENSURE(plugin->is_value(empty_set.get()));
// Test 2: Singleton with value element is a value
expr_ref five(arith.mk_int(5), m);
app_ref singleton_five(fsets.mk_singleton(five), m);
ENSURE(plugin->is_value(singleton_five.get()));
// Test 3: Union of empty and singleton is a value
app_ref union_empty_singleton(fsets.mk_union(empty_set, singleton_five), m);
ENSURE(plugin->is_value(union_empty_singleton.get()));
// Test 4: Union of two singletons with value elements is a value
expr_ref seven(arith.mk_int(7), m);
app_ref singleton_seven(fsets.mk_singleton(seven), m);
app_ref union_two_singletons(fsets.mk_union(singleton_five, singleton_seven), m);
ENSURE(plugin->is_value(union_two_singletons.get()));
// Test 5: Nested union of singletons and empty sets is a value
app_ref union_nested(fsets.mk_union(union_empty_singleton, singleton_seven), m);
ENSURE(plugin->is_value(union_nested.get()));
// Test 6: Union with empty set is a value
app_ref union_empty_empty(fsets.mk_union(empty_set, empty_set), m);
ENSURE(plugin->is_value(union_empty_empty.get()));
// Test 7: Triple union is a value
expr_ref nine(arith.mk_int(9), m);
app_ref singleton_nine(fsets.mk_singleton(nine), m);
app_ref union_temp(fsets.mk_union(singleton_five, singleton_seven), m);
app_ref union_triple(fsets.mk_union(union_temp, singleton_nine), m);
ENSURE(plugin->is_value(union_triple.get()));
// Test 8: Range is a value
expr_ref zero(arith.mk_int(0), m);
expr_ref ten(arith.mk_int(10), m);
app_ref range_set(fsets.mk_range(zero, ten), m);
ENSURE(plugin->is_value(range_set.get()));
// Test 9: Union with range is a value
app_ref union_with_range(fsets.mk_union(singleton_five, range_set), m);
ENSURE(plugin->is_value(union_with_range.get()));
// Test 10: Intersect is a value
app_ref intersect_set(fsets.mk_intersect(singleton_five, singleton_seven), m);
ENSURE(plugin->is_value(intersect_set.get()));
ENSURE(m.is_fully_interp(int_sort));
ENSURE(m.is_fully_interp(finite_set_int));
}
static void tst_finite_set_is_fully_interp() {
ast_manager m;
reg_decl_plugins(m);
finite_set_util fsets(m);
// Test with Bool sort (should be fully interpreted)
sort_ref bool_sort(m.mk_bool_sort(), m);
parameter bool_param(bool_sort.get());
sort_ref finite_set_bool(m.mk_sort(fsets.get_family_id(), FINITE_SET_SORT, 1, &bool_param), m);
ENSURE(m.is_fully_interp(bool_sort));
ENSURE(m.is_fully_interp(finite_set_bool));
// Test with uninterpreted sort (should not be fully interpreted)
sort_ref uninterp_sort(m.mk_uninterpreted_sort(symbol("U")), m);
parameter uninterp_param(uninterp_sort.get());
sort_ref finite_set_uninterp(m.mk_sort(fsets.get_family_id(), FINITE_SET_SORT, 1, &uninterp_param), m);
ENSURE(!m.is_fully_interp(uninterp_sort));
ENSURE(!m.is_fully_interp(finite_set_uninterp));
}
static void tst_finite_set_sort_size() {
ast_manager m;
reg_decl_plugins(m);
finite_set_util fsets(m);
// Test 1: Bool sort (size 2) -> FiniteSet(Bool) should have size 2^2 = 4
sort_ref bool_sort(m.mk_bool_sort(), m);
parameter bool_param(bool_sort.get());
sort_ref finite_set_bool(m.mk_sort(fsets.get_family_id(), FINITE_SET_SORT, 1, &bool_param), m);
sort_size const& bool_set_sz = finite_set_bool->get_num_elements();
ENSURE(bool_set_sz.is_finite());
ENSURE(!bool_set_sz.is_very_big());
ENSURE(bool_set_sz.size() == 4); // 2^2 = 4
// Test 2: Create a finite sort with known size (e.g., BV with size 3)
// BV[3] has 2^3 = 8 elements, so FiniteSet(BV[3]) should have 2^8 = 256 elements
parameter bv_param(3);
sort_ref bv3_sort(m.mk_sort(m.mk_family_id("bv"), 0, 1, &bv_param), m);
parameter bv3_param(bv3_sort.get());
sort_ref finite_set_bv3(m.mk_sort(fsets.get_family_id(), FINITE_SET_SORT, 1, &bv3_param), m);
sort_size const& bv3_set_sz = finite_set_bv3->get_num_elements();
ENSURE(bv3_set_sz.is_finite());
ENSURE(!bv3_set_sz.is_very_big());
ENSURE(bv3_set_sz.size() == 256); // 2^8 = 256
// Test 3: BV with size 5 -> BV[5] has 2^5 = 32 elements
// Since 32 > 30, FiniteSet(BV[5]) should be marked as very_big
parameter bv5_param(5);
sort_ref bv5_sort(m.mk_sort(m.mk_family_id("bv"), 0, 1, &bv5_param), m);
parameter bv5_set_param(bv5_sort.get());
sort_ref finite_set_bv5(m.mk_sort(fsets.get_family_id(), FINITE_SET_SORT, 1, &bv5_set_param), m);
sort_size const& bv5_set_sz = finite_set_bv5->get_num_elements();
ENSURE(bv5_set_sz.is_very_big());
// Test 4: Int sort (infinite) -> FiniteSet(Int) should be infinite
arith_util arith(m);
sort_ref int_sort(arith.mk_int(), m);
parameter int_param(int_sort.get());
sort_ref finite_set_int(m.mk_sort(fsets.get_family_id(), FINITE_SET_SORT, 1, &int_param), m);
sort_size const& int_set_sz = finite_set_int->get_num_elements();
ENSURE(int_set_sz.is_infinite());
// Test 5: BV with size 4 -> BV[4] has 2^4 = 16 elements
// FiniteSet(BV[4]) should have 2^16 = 65536 elements
parameter bv4_param(4);
sort_ref bv4_sort(m.mk_sort(m.mk_family_id("bv"), 0, 1, &bv4_param), m);
parameter bv4_set_param(bv4_sort.get());
sort_ref finite_set_bv4(m.mk_sort(fsets.get_family_id(), FINITE_SET_SORT, 1, &bv4_set_param), m);
sort_size const& bv4_set_sz = finite_set_bv4->get_num_elements();
ENSURE(bv4_set_sz.is_finite());
ENSURE(!bv4_set_sz.is_very_big());
ENSURE(bv4_set_sz.size() == 65536); // 2^16 = 65536
}
void tst_finite_set() {
tst_finite_set_basic();
tst_finite_set_map_filter();
tst_finite_set_is_value();
tst_finite_set_is_fully_interp();
tst_finite_set_sort_size();
}