3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-11 03:33:35 +00:00
z3/src/sat/smt/q_mbi.cpp
Nikolaj Bjorner 374ae52d70 testing mbi
2020-12-26 13:49:59 -08:00

376 lines
12 KiB
C++

/*++
Copyright (c) 2020 Microsoft Corporation
Module Name:
q_mbi.cpp
Abstract:
Model-based quantifier instantiation plugin
Author:
Nikolaj Bjorner (nbjorner) 2020-09-29
--*/
#include "ast/ast_trail.h"
#include "ast/ast_util.h"
#include "ast/for_each_expr.h"
#include "ast/rewriter/var_subst.h"
#include "ast/rewriter/expr_safe_replace.h"
#include "qe/mbp/mbp_arith.h"
#include "qe/mbp/mbp_arrays.h"
#include "qe/mbp/mbp_datatypes.h"
#include "sat/smt/sat_th.h"
#include "sat/smt/q_mbi.h"
#include "sat/smt/q_solver.h"
#include "sat/smt/euf_solver.h"
namespace q {
mbqi::mbqi(euf::solver& ctx, solver& s) :
ctx(ctx),
m_qs(s),
m(s.get_manager()),
m_model_fixer(ctx, m_qs) {
auto* ap = alloc(mbp::arith_project_plugin, m);
ap->set_check_purified(false);
ap->set_apply_projection(true);
add_plugin(ap);
add_plugin(alloc(mbp::datatype_project_plugin, m));
add_plugin(alloc(mbp::array_project_plugin, m));
}
void mbqi::restrict_to_universe(expr* sk, ptr_vector<expr> const& universe) {
SASSERT(!universe.empty());
expr_ref_vector eqs(m);
for (expr* e : universe)
eqs.push_back(m.mk_eq(sk, e));
expr_ref fml = mk_or(eqs);
std::cout << "restrict to universe " << fml << "\n";
m_solver->assert_expr(fml);
}
expr_ref mbqi::replace_model_value(expr* e) {
auto const& v2r = ctx.values2root();
euf::enode* r = nullptr;
if (v2r.find(e, r))
return choose_term(r);
if (is_app(e) && to_app(e)->get_num_args() > 0) {
expr_ref_vector args(m);
for (expr* arg : *to_app(e))
args.push_back(replace_model_value(arg));
return expr_ref(m.mk_app(to_app(e)->get_decl(), args), m);
}
return expr_ref(e, m);
}
expr_ref mbqi::choose_term(euf::enode* r) {
unsigned sz = r->class_size();
unsigned start = ctx.s().rand()() % sz;
unsigned i = 0;
for (euf::enode* n : euf::enode_class(r))
if (i++ >= start)
return expr_ref(n->get_expr(), m);
return expr_ref(nullptr, m);
}
lbool mbqi::check_forall(quantifier* q) {
quantifier* q_flat = m_qs.flatten(q);
init_solver();
::solver::scoped_push _sp(*m_solver);
std::cout << "quantifier\n" << mk_pp(q, m, 4) << "\n";
// std::cout << *m_model << "\n";
auto* qb = specialize(q_flat);
if (!qb)
return l_undef;
if (m.is_false(qb->mbody))
return l_true;
std::cout << "body\n" << qb->mbody << "\n";
m_solver->assert_expr(qb->mbody);
lbool r = m_solver->check_sat(0, nullptr);
if (r == l_undef)
return r;
if (r == l_false)
return l_true;
model_ref mdl0, mdl1;
expr_ref proj(m);
m_solver->get_model(mdl0);
sat::literal qlit = ctx.expr2literal(q);
if (is_exists(q))
qlit.neg();
unsigned i = 0;
if (!qb->var_args.empty()) {
::solver::scoped_push _sp(*m_solver);
add_domain_eqs(*mdl0, *qb);
std::cout << "check\n";
for (; i < m_max_cex && l_true == m_solver->check_sat(0, nullptr); ++i) {
m_solver->get_model(mdl1);
proj = solver_project(*mdl1, *qb);
if (!proj)
break;
TRACE("q", tout << "project: " << proj << "\n";);
std::cout << "project\n" << proj << "\n";
std::cout << *m_model << "\n";
static unsigned s_count = 0;
++s_count;
if (s_count == 3)
exit(0);
++m_stats.m_num_instantiations;
m_qs.add_clause(~qlit, ~ctx.mk_literal(proj));
m_solver->assert_expr(m.mk_not(proj));
}
}
if (i == 0) {
add_domain_bounds(*mdl0, *qb);
proj = solver_project(*mdl0, *qb);
if (!proj)
return l_undef;
std::cout << "project-base\n" << proj << "\n";
TRACE("q", tout << "project-base: " << proj << "\n";);
++m_stats.m_num_instantiations;
m_qs.add_clause(~qlit, ~ctx.mk_literal(proj));
}
// TODO: add as top-level clause for relevancy
return l_false;
}
mbqi::q_body* mbqi::specialize(quantifier* q) {
mbqi::q_body* result = nullptr;
var_subst subst(m);
if (!m_q2body.find(q, result)) {
unsigned sz = q->get_num_decls();
result = alloc(q_body, m);
m_q2body.insert(q, result);
ctx.push(new_obj_trail<euf::solver, q_body>(result));
ctx.push(insert_obj_map<euf::solver, quantifier, q_body*>(m_q2body, q));
app_ref_vector& vars = result->vars;
vars.resize(sz, nullptr);
for (unsigned i = 0; i < sz; ++i) {
sort* s = q->get_decl_sort(i);
vars[i] = m.mk_fresh_const(q->get_decl_name(i), s, false);
if (m_model->has_uninterpreted_sort(s))
restrict_to_universe(vars.get(i), m_model->get_universe(s));
}
expr_ref fml = subst(q->get_expr(), vars);
extract_var_args(q->get_expr(), *result);
if (is_forall(q))
fml = m.mk_not(fml);
flatten_and(fml, result->vbody);
}
expr_ref& mbody = result->mbody;
if (!m_model->eval_expr(q->get_expr(), mbody, true))
return nullptr;
mbody = subst(mbody, result->vars);
if (is_forall(q))
mbody = mk_not(m, mbody);
TRACE("q", tout << "specialize " << mbody << "\n";);
return result;
}
expr_ref mbqi::solver_project(model& mdl, q_body& qb) {
model::scoped_model_completion _sc(mdl, true);
for (app* v : qb.vars)
m_model->register_decl(v->get_decl(), mdl(v));
expr_ref_vector fmls(qb.vbody);
app_ref_vector vars(qb.vars);
bool fmls_extracted = false;
TRACE("q",
tout << "Project\n";
tout << *m_model << "\n";
tout << fmls << "\n";
tout << "model of projection\n" << mdl << "\n";
tout << "var args: " << qb.var_args.size() << "\n";
for (expr* f : fmls)
if (m_model->is_false(f))
tout << mk_pp(f, m) << " := false\n";
tout << "vars: " << vars << "\n";);
expr_safe_replace rep(m);
for (unsigned i = 0; i < vars.size(); ++i) {
app* v = vars.get(i);
auto* p = get_plugin(v);
if (p && !fmls_extracted) {
fmls.append(qb.domain_eqs);
eliminate_nested_vars(fmls, qb);
mbp::project_plugin proj(m);
proj.extract_literals(*m_model, vars, fmls);
fmls_extracted = true;
}
if (p)
(*p)(*m_model, vars, fmls);
}
for (app* v : vars) {
expr_ref term(m);
expr_ref val = (*m_model)(v);
val = m_model->unfold_as_array(val);
term = replace_model_value(val);
rep.insert(v, term);
if (val != term)
rep.insert(val, term);
}
rep(fmls);
return mk_and(fmls);
}
/**
* Add disjunctions to m_solver that restrict the possible values of
* arguments to uninterpreted functions. The disjunctions added to the solver
* are specialized with respect to m_model.
* Add also disjunctions to the quantifier "domain_eqs", to track the constraints
* added to the solver.
*/
void mbqi::add_domain_eqs(model& mdl, q_body& qb) {
qb.domain_eqs.reset();
var_subst subst(m);
for (auto p : qb.var_args) {
expr_ref bounds = m_model_fixer.restrict_arg(p.first, p.second);
if (m.is_true(bounds))
continue;
expr_ref vbounds = subst(bounds, qb.vars);
expr_ref mbounds(m);
if (!m_model->eval_expr(bounds, mbounds, true))
return;
mbounds = subst(mbounds, qb.vars);
std::cout << "domain eqs " << mbounds << "\n";
m_solver->assert_expr(mbounds);
qb.domain_eqs.push_back(vbounds);
}
}
/*
* Add bounds to sub-terms under uninterpreted functions for projection.
*/
void mbqi::add_domain_bounds(model& mdl, q_body& qb) {
qb.domain_eqs.reset();
for (app* v : qb.vars)
m_model->register_decl(v->get_decl(), mdl(v));
if (qb.var_args.empty())
return;
var_subst subst(m);
for (auto p : qb.var_args) {
expr_ref _term = subst(p.first, qb.vars);
app_ref term(to_app(_term), m);
expr_ref value = (*m_model)(term->get_arg(p.second));
m_model_fixer.invert_arg(term, p.second, value, qb.domain_eqs);
}
}
/*
* Remove occurrences of free functions that contain variables.
* Add top-level equalities for those occurrences.
*
* F[g(t)] -> F[s] & g(t) = s
*
* where
* - eval(g(t)) = eval(s),
* - t contains bound variables,
* - s is ground.
*/
void mbqi::eliminate_nested_vars(expr_ref_vector& fmls, q_body& qb) {
if (qb.var_args.empty())
return;
expr_safe_replace rep(m);
var_subst subst(m);
expr_ref_vector eqs(m);
for (auto p : qb.var_args) {
expr_ref _term = subst(p.first, qb.vars);
app_ref term(to_app(_term), m);
expr_ref value = (*m_model)(term);
expr* s = m_model_fixer.invert_app(term, value);
rep.insert(term, s);
eqs.push_back(m.mk_eq(term, s));
}
rep(fmls);
fmls.append(eqs);
}
/*
* Add domain restrictions for every non-ground arguments to uninterpreted functions.
*/
void mbqi::extract_var_args(expr* _t, q_body& qb) {
expr_ref t(_t, m);
for (expr* s : subterms(t)) {
if (is_ground(s))
continue;
if (is_uninterp(s) && to_app(s)->get_num_args() > 0) {
unsigned i = 0;
for (expr* arg : *to_app(s)) {
if (!is_ground(arg) && !is_uninterp(arg))
qb.var_args.push_back(std::make_pair(to_app(s), i));
++i;
}
}
}
}
lbool mbqi::operator()() {
lbool result = l_true;
m_model = nullptr;
for (sat::literal lit : m_qs.m_universal) {
quantifier* q = to_quantifier(ctx.bool_var2expr(lit.var()));
if (!ctx.is_relevant(q))
continue;
init_model();
switch (check_forall(q)) {
case l_false:
result = l_false;
break;
case l_undef:
if (result == l_true)
result = l_undef;
break;
default:
break;
}
}
m_max_cex += ctx.get_config().m_mbqi_max_cexs;
return result;
}
void mbqi::init_model() {
if (m_model)
return;
m_model = alloc(model, m);
ctx.update_model(m_model);
}
void mbqi::init_solver() {
if (!m_solver)
m_solver = mk_smt2_solver(m, ctx.s().params());
}
void mbqi::init_search() {
m_max_cex = ctx.get_config().m_mbqi_max_cexs;
}
void mbqi::finalize_model(model& mdl) {
m_model_fixer(mdl);
}
mbp::project_plugin* mbqi::get_plugin(app* var) {
family_id fid = m.get_sort(var)->get_family_id();
return m_plugins.get(fid, nullptr);
}
void mbqi::add_plugin(mbp::project_plugin* p) {
family_id fid = p->get_family_id();
m_plugins.reserve(fid + 1);
SASSERT(!m_plugins.get(fid, nullptr));
m_plugins.set(fid, p);
}
void mbqi::collect_statistics(statistics& st) const {
if (m_solver)
m_solver->collect_statistics(st);
st.update("q-num-instantiations", m_stats.m_num_instantiations);
}
}