3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-15 13:28:47 +00:00
z3/src/ackermannization/lackr.cpp
2016-03-29 19:19:07 +01:00

291 lines
8.9 KiB
C++

/*++
Copyright (c) 2015 Microsoft Corporation
Module Name:
lackr.cpp
Abstract:
Author:
Mikolas Janota
Revision History:
--*/
#include"lackr.h"
#include"ackermannization_params.hpp"
#include"tactic.h"
#include"lackr_model_constructor.h"
#include"ackr_info.h"
#include"for_each_expr.h"
#include"model_smt2_pp.h"
lackr::lackr(ast_manager& m, params_ref p, lackr_stats& st, expr_ref_vector& formulas,
solver * uffree_solver)
: m_m(m)
, m_p(p)
, m_formulas(formulas)
, m_abstr(m)
, m_sat(uffree_solver)
, m_ackr_helper(m)
, m_simp(m)
, m_ackrs(m)
, m_st(st)
, m_is_init(false)
{
updt_params(p);
}
void lackr::updt_params(params_ref const & _p) {
ackermannization_params p(_p);
m_eager = p.eager();
}
lackr::~lackr() {
const fun2terms_map::iterator e = m_fun2terms.end();
for (fun2terms_map::iterator i = m_fun2terms.begin(); i != e; ++i) {
dealloc(i->get_value());
}
}
lbool lackr::operator() () {
SASSERT(m_sat);
if (!init()) return l_undef;
const lbool rv = m_eager ? eager() : lazy();
if (rv == l_true) m_sat->get_model(m_model);
CTRACE("lackr", rv == l_true,
model_smt2_pp(tout << "abstr_model(\n", m_m, *(m_model.get()), 2); tout << ")\n"; );
return rv;
}
bool lackr::mk_ackermann(/*out*/goal_ref& g, double lemmas_upper_bound) {
if (lemmas_upper_bound <= 0) return false;
if (!init()) return false;
if (lemmas_upper_bound != std::numeric_limits<double>::infinity()) {
const double lemmas_bound = ackr_helper::calculate_lemma_bound(m_fun2terms);
if (lemmas_bound > lemmas_upper_bound) return false;
}
eager_enc();
for (unsigned i = 0; i < m_abstr.size(); ++i) g->assert_expr(m_abstr.get(i));
for (unsigned i = 0; i < m_ackrs.size(); ++i) g->assert_expr(m_ackrs.get(i));
return true;
}
bool lackr::init() {
SASSERT(!m_is_init);
params_ref simp_p(m_p);
m_simp.updt_params(simp_p);
m_info = alloc(ackr_info, m_m);
if (!collect_terms()) return false;
abstract();
m_is_init = true;
return true;
}
//
// Introduce ackermann lemma for the two given terms.
//
bool lackr::ackr(app * const t1, app * const t2) {
TRACE("lackr", tout << "ackr "
<< mk_ismt2_pp(t1, m_m, 2) << " , " << mk_ismt2_pp(t2, m_m, 2) << "\n";);
const unsigned sz = t1->get_num_args();
SASSERT(t2->get_num_args() == sz);
expr_ref_vector eqs(m_m);
for (unsigned i = 0; i < sz; ++i) {
expr * const arg1 = t1->get_arg(i);
expr * const arg2 = t2->get_arg(i);
if (m_m.are_equal(arg1, arg2)) continue; // quickly skip syntactically equal
if (m_m.are_distinct(arg1, arg2)){ // quickly abort if there are two distinct (e.g. numerals)
TRACE("lackr", tout << "never eq\n";);
return false;
}
eqs.push_back(m_m.mk_eq(arg1, arg2));
}
app * const a1 = m_info->get_abstr(t1);
app * const a2 = m_info->get_abstr(t2);
SASSERT(a1 && a2);
TRACE("lackr", tout << "abstr1 " << mk_ismt2_pp(a1, m_m, 2) << "\n";);
TRACE("lackr", tout << "abstr2 " << mk_ismt2_pp(a2, m_m, 2) << "\n";);
expr_ref lhs(m_m.mk_and(eqs.size(), eqs.c_ptr()), m_m);
TRACE("lackr", tout << "ackr constr lhs" << mk_ismt2_pp(lhs, m_m, 2) << "\n";);
expr_ref rhs(m_m.mk_eq(a1, a2),m_m);
TRACE("lackr", tout << "ackr constr rhs" << mk_ismt2_pp(rhs, m_m, 2) << "\n";);
expr_ref cg(m_m.mk_implies(lhs, rhs), m_m);
TRACE("lackr", tout << "ackr constr" << mk_ismt2_pp(cg, m_m, 2) << "\n";);
expr_ref cga(m_m);
m_info->abstract(cg, cga); // constraint needs abstraction due to nested applications
m_simp(cga);
TRACE("lackr", tout << "ackr constr abs:" << mk_ismt2_pp(cga, m_m, 2) << "\n";);
if (m_m.is_true(cga)) return false;
m_st.m_ackrs_sz++;
m_ackrs.push_back(cga);
return true;
}
//
// Introduce the ackermann lemma for each pair of terms.
//
void lackr::eager_enc() {
TRACE("lackr", tout << "#funs: " << m_fun2terms.size() << std::endl;);
const fun2terms_map::iterator e = m_fun2terms.end();
for (fun2terms_map::iterator i = m_fun2terms.begin(); i != e; ++i) {
checkpoint();
func_decl* const fd = i->m_key;
app_set * const ts = i->get_value();
const app_set::iterator r = ts->end();
for (app_set::iterator j = ts->begin(); j != r; ++j) {
app_set::iterator k = j;
++k;
for (; k != r; ++k) {
app * const t1 = *j;
app * const t2 = *k;
SASSERT(t1->get_decl() == fd);
SASSERT(t2->get_decl() == fd);
if (t1 == t2) continue;
ackr(t1,t2);
}
}
}
}
void lackr::abstract() {
const fun2terms_map::iterator e = m_fun2terms.end();
for (fun2terms_map::iterator i = m_fun2terms.begin(); i != e; ++i) {
func_decl* const fd = i->m_key;
app_set * const ts = i->get_value();
sort* const s = fd->get_range();
const app_set::iterator r = ts->end();
for (app_set::iterator j = ts->begin(); j != r; ++j) {
app * const fc = m_m.mk_fresh_const(fd->get_name().str().c_str(), s);
app * const t = *j;
SASSERT(t->get_decl() == fd);
m_info->set_abstr(t, fc);
TRACE("lackr", tout << "abstr term "
<< mk_ismt2_pp(t, m_m, 2)
<< " -> "
<< mk_ismt2_pp(fc, m_m, 2)
<< "\n";);
}
}
m_info->seal();
// perform abstraction of the formulas
const unsigned sz = m_formulas.size();
for (unsigned i = 0; i < sz; ++i) {
expr_ref a(m_m);
m_info->abstract(m_formulas.get(i), a);
m_abstr.push_back(a);
}
}
void lackr::add_term(app* a) {
if (a->get_num_args() == 0) return;
if (!m_ackr_helper.should_ackermannize(a)) return;
func_decl* const fd = a->get_decl();
app_set* ts = 0;
if (!m_fun2terms.find(fd, ts)) {
ts = alloc(app_set);
m_fun2terms.insert(fd, ts);
}
TRACE("lackr", tout << "term(" << mk_ismt2_pp(a, m_m, 2) << ")\n";);
ts->insert(a);
}
void lackr::push_abstraction() {
const unsigned sz = m_abstr.size();
for (unsigned i = 0; i < sz; ++i) {
m_sat->assert_expr(m_abstr.get(i));
}
}
lbool lackr::eager() {
SASSERT(m_is_init);
push_abstraction();
TRACE("lackr", tout << "run sat 0\n"; );
const lbool rv0 = m_sat->check_sat(0, 0);
if (rv0 == l_false) return l_false;
eager_enc();
expr_ref all(m_m);
all = m_m.mk_and(m_ackrs.size(), m_ackrs.c_ptr());
m_simp(all);
m_sat->assert_expr(all);
TRACE("lackr", tout << "run sat all\n"; );
return m_sat->check_sat(0, 0);
}
lbool lackr::lazy() {
SASSERT(m_is_init);
lackr_model_constructor mc(m_m, m_info);
push_abstraction();
unsigned ackr_head = 0;
while (1) {
m_st.m_it++;
checkpoint();
TRACE("lackr", tout << "lazy check: " << m_st.m_it << "\n";);
const lbool r = m_sat->check_sat(0, 0);
if (r == l_undef) return l_undef; // give up
if (r == l_false) return l_false; // abstraction unsat
// reconstruct model
model_ref am;
m_sat->get_model(am);
const bool mc_res = mc.check(am);
if (mc_res) return l_true; // model okay
// refine abstraction
const lackr_model_constructor::conflict_list conflicts = mc.get_conflicts();
for (lackr_model_constructor::conflict_list::const_iterator i = conflicts.begin();
i != conflicts.end(); ++i) {
ackr(i->first, i->second);
}
while (ackr_head < m_ackrs.size()) {
m_sat->assert_expr(m_ackrs.get(ackr_head++));
}
}
}
//
// Collect all uninterpreted terms, skipping 0-arity.
//
bool lackr::collect_terms() {
ptr_vector<expr> stack;
expr * curr;
expr_mark visited;
for(unsigned i = 0; i < m_formulas.size(); ++i) {
stack.push_back(m_formulas.get(i));
TRACE("lackr", tout << "infla: " <<mk_ismt2_pp(m_formulas.get(i), m_m, 2) << "\n";);
}
while (!stack.empty()) {
curr = stack.back();
if (visited.is_marked(curr)) {
stack.pop_back();
continue;
}
switch (curr->get_kind()) {
case AST_VAR:
visited.mark(curr, true);
stack.pop_back();
break;
case AST_APP:
{
app * const a = to_app(curr);
if (for_each_expr_args(stack, visited, a->get_num_args(), a->get_args())) {
visited.mark(curr, true);
stack.pop_back();
add_term(a);
}
}
break;
case AST_QUANTIFIER:
return false; // quantifiers not supported
default:
UNREACHABLE();
return false;
}
}
return true;
}