mirror of
https://github.com/Z3Prover/z3
synced 2025-04-13 20:38:43 +00:00
346 lines
11 KiB
C++
346 lines
11 KiB
C++
/*++
|
|
Copyright (c) 2017 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
<name>
|
|
|
|
Abstract:
|
|
|
|
We have an equality : sum by j of row[j]*x[j] = rs
|
|
We try to pin a var by pushing the total by using the variable bounds
|
|
on a loop we drive the partial sum down, denoting the variables of this process by _u.
|
|
In the same loop trying to pin variables by pushing the partial sum up, denoting the variable related to it by _l
|
|
|
|
Author:
|
|
Lev Nachmanson (levnach)
|
|
Nikolaj Bjorner (nbjorner)
|
|
Revision History:
|
|
|
|
|
|
--*/
|
|
#pragma once
|
|
|
|
#include "util/vector.h"
|
|
#include "math/lp/implied_bound.h"
|
|
#include "math/lp/test_bound_analyzer.h"
|
|
|
|
namespace lp {
|
|
|
|
|
|
template <typename C, typename B> // C plays a role of a container, B - lp_bound_propagator
|
|
class bound_analyzer_on_row {
|
|
const C& m_row;
|
|
B & m_bp;
|
|
unsigned m_row_index;
|
|
int m_column_of_u; // index of an unlimited from above monoid
|
|
// -1 means that such a value is not found, -2 means that at least two of such monoids were found
|
|
int m_column_of_l; // index of an unlimited from below monoid
|
|
impq m_rs;
|
|
|
|
public :
|
|
// constructor
|
|
bound_analyzer_on_row(
|
|
const C & it,
|
|
unsigned bj, // basis column for the row
|
|
const numeric_pair<mpq>& rs,
|
|
unsigned row_or_term_index,
|
|
B & bp)
|
|
:
|
|
m_row(it),
|
|
m_bp(bp),
|
|
m_row_index(row_or_term_index),
|
|
m_column_of_u(-1),
|
|
m_column_of_l(-1),
|
|
m_rs(rs)
|
|
{}
|
|
|
|
|
|
static unsigned analyze_row(const C & row,
|
|
unsigned bj, // basis column for the row
|
|
const numeric_pair<mpq>& rs,
|
|
unsigned row_or_term_index,
|
|
B & bp) {
|
|
bound_analyzer_on_row a(row, bj, rs, row_or_term_index, bp);
|
|
return a.analyze();
|
|
}
|
|
|
|
private:
|
|
|
|
unsigned analyze() {
|
|
unsigned num_prop = 0;
|
|
for (const auto & c : m_row) {
|
|
if ((m_column_of_l == -2) && (m_column_of_u == -2))
|
|
return 0;
|
|
analyze_bound_on_var_on_coeff(c.var(), c.coeff());
|
|
}
|
|
++num_prop;
|
|
if (m_column_of_u >= 0)
|
|
limit_monoid_u_from_below();
|
|
else if (m_column_of_u == -1)
|
|
limit_all_monoids_from_below();
|
|
else
|
|
--num_prop;
|
|
|
|
++num_prop;
|
|
if (m_column_of_l >= 0)
|
|
limit_monoid_l_from_above();
|
|
else if (m_column_of_l == -1)
|
|
limit_all_monoids_from_above();
|
|
else
|
|
--num_prop;
|
|
return num_prop;
|
|
}
|
|
|
|
bool bound_is_available(unsigned j, bool lower_bound) {
|
|
return (lower_bound && m_bp.lower_bound_is_available(j)) ||
|
|
(!lower_bound && m_bp.upper_bound_is_available(j));
|
|
}
|
|
|
|
const impq & ub(unsigned j) const {
|
|
lp_assert(m_bp.upper_bound_is_available(j));
|
|
return m_bp.get_upper_bound(j);
|
|
}
|
|
|
|
const impq & lb(unsigned j) const {
|
|
lp_assert(m_bp.lower_bound_is_available(j));
|
|
return m_bp.get_lower_bound(j);
|
|
}
|
|
|
|
const mpq & monoid_max_no_mult(bool a_is_pos, unsigned j, bool & strict) const {
|
|
if (a_is_pos) {
|
|
strict = !is_zero(ub(j).y);
|
|
return ub(j).x;
|
|
}
|
|
strict = !is_zero(lb(j).y);
|
|
return lb(j).x;
|
|
}
|
|
|
|
mpq monoid_max(const mpq & a, unsigned j) const {
|
|
return a * (is_pos(a) ? ub(j).x : lb(j).x);
|
|
}
|
|
|
|
mpq monoid_max(const mpq & a, unsigned j, bool & strict) const {
|
|
if (is_pos(a)) {
|
|
strict = !is_zero(ub(j).y);
|
|
return a * ub(j).x;
|
|
}
|
|
strict = !is_zero(lb(j).y);
|
|
return a * lb(j).x;
|
|
}
|
|
|
|
const mpq & monoid_min_no_mult(bool a_is_pos, unsigned j, bool & strict) const {
|
|
if (!a_is_pos) {
|
|
strict = !is_zero(ub(j).y);
|
|
return ub(j).x;
|
|
}
|
|
strict = !is_zero(lb(j).y);
|
|
return lb(j).x;
|
|
}
|
|
|
|
mpq monoid_min(const mpq & a, unsigned j, bool& strict) const {
|
|
if (is_neg(a)) {
|
|
strict = !is_zero(ub(j).y);
|
|
return a * ub(j).x;
|
|
}
|
|
strict = !is_zero(lb(j).y);
|
|
return a * lb(j).x;
|
|
}
|
|
|
|
mpq monoid_min(const mpq & a, unsigned j) const {
|
|
return a * (is_neg(a) ? ub(j).x : lb(j).x);
|
|
}
|
|
|
|
mpq m_total, m_bound;
|
|
void limit_all_monoids_from_above() {
|
|
int strict = 0;
|
|
m_total.reset();
|
|
lp_assert(is_zero(m_total));
|
|
for (const auto& p : m_row) {
|
|
bool str;
|
|
m_total -= monoid_min(p.coeff(), p.var(), str);
|
|
if (str)
|
|
strict++;
|
|
}
|
|
|
|
for (const auto &p : m_row) {
|
|
bool str;
|
|
bool a_is_pos = is_pos(p.coeff());
|
|
m_bound = m_total;
|
|
m_bound /= p.coeff();
|
|
m_bound += monoid_min_no_mult(a_is_pos, p.var(), str);
|
|
if (a_is_pos) {
|
|
limit_j(p.var(), m_bound, true, false, strict - static_cast<int>(str) > 0);
|
|
}
|
|
else {
|
|
limit_j(p.var(), m_bound, false, true, strict - static_cast<int>(str) > 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
void limit_all_monoids_from_below() {
|
|
int strict = 0;
|
|
m_total.reset();
|
|
lp_assert(is_zero(m_total));
|
|
for (const auto &p : m_row) {
|
|
bool str;
|
|
m_total -= monoid_max(p.coeff(), p.var(), str);
|
|
if (str)
|
|
strict++;
|
|
}
|
|
|
|
for (const auto& p : m_row) {
|
|
bool str;
|
|
bool a_is_pos = is_pos(p.coeff());
|
|
m_bound = m_total;
|
|
m_bound /= p.coeff();
|
|
m_bound += monoid_max_no_mult(a_is_pos, p.var(), str);
|
|
bool astrict = strict - static_cast<int>(str) > 0;
|
|
if (a_is_pos) {
|
|
limit_j(p.var(), m_bound, true, true, astrict);
|
|
}
|
|
else {
|
|
limit_j(p.var(), m_bound, false, false, astrict);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void limit_monoid_u_from_below() {
|
|
// we are going to limit from below the monoid m_column_of_u,
|
|
// every other monoid is impossible to limit from below
|
|
mpq u_coeff;
|
|
unsigned j;
|
|
m_bound = -m_rs.x;
|
|
bool strict = false;
|
|
for (const auto& p : m_row) {
|
|
j = p.var();
|
|
if (j == static_cast<unsigned>(m_column_of_u)) {
|
|
u_coeff = p.coeff();
|
|
continue;
|
|
}
|
|
bool str;
|
|
m_bound -= monoid_max(p.coeff(), j, str);
|
|
if (str)
|
|
strict = true;
|
|
}
|
|
|
|
m_bound /= u_coeff;
|
|
|
|
if (u_coeff.is_pos()) {
|
|
limit_j(m_column_of_u, m_bound, true, true, strict);
|
|
} else {
|
|
limit_j(m_column_of_u, m_bound, false, false, strict);
|
|
}
|
|
}
|
|
|
|
|
|
void limit_monoid_l_from_above() {
|
|
// we are going to limit from above the monoid m_column_of_l,
|
|
// every other monoid is impossible to limit from above
|
|
mpq l_coeff;
|
|
unsigned j;
|
|
m_bound = -m_rs.x;
|
|
bool strict = false;
|
|
for (const auto &p : m_row) {
|
|
j = p.var();
|
|
if (j == static_cast<unsigned>(m_column_of_l)) {
|
|
l_coeff = p.coeff();
|
|
continue;
|
|
}
|
|
|
|
bool str;
|
|
m_bound -= monoid_min(p.coeff(), j, str);
|
|
if (str)
|
|
strict = true;
|
|
}
|
|
m_bound /= l_coeff;
|
|
if (is_pos(l_coeff)) {
|
|
limit_j(m_column_of_l, m_bound, true, false, strict);
|
|
} else {
|
|
limit_j(m_column_of_l, m_bound, false, true, strict);
|
|
}
|
|
}
|
|
|
|
// // it is the coefficient before the bounded column
|
|
// void provide_evidence(bool coeff_is_pos) {
|
|
// /*
|
|
// auto & be = m_ibounds.back();
|
|
// bool lower_bound = be.m_lower_bound;
|
|
// if (!coeff_is_pos)
|
|
// lower_bound = !lower_bound;
|
|
// auto it = m_row.clone();
|
|
// mpq a; unsigned j;
|
|
// while (it->next(a, j)) {
|
|
// if (be.m_j == j) continue;
|
|
// lp_assert(bound_is_available(j, is_neg(a) ? lower_bound : !lower_bound));
|
|
// be.m_vector_of_bound_signatures.emplace_back(a, j, numeric_traits<impq>::
|
|
// is_neg(a)? lower_bound: !lower_bound);
|
|
// }
|
|
// delete it;
|
|
// */
|
|
// }
|
|
|
|
void limit_j(unsigned bound_j, const mpq& u, bool coeff_before_j_is_pos, bool is_lower_bound, bool strict)
|
|
{
|
|
unsigned row_index = this->m_row_index;
|
|
auto* lar = &m_bp.lp();
|
|
auto explain = [bound_j, coeff_before_j_is_pos, is_lower_bound, strict, row_index, lar]() {
|
|
TRACE("bound_analyzer", tout << "explain_bound_on_var_on_coeff, bound_j = " << bound_j << ", coeff_before_j_is_pos = " << coeff_before_j_is_pos << ", is_lower_bound = " << is_lower_bound << ", strict = " << strict << ", row_index = " << row_index << "\n";);
|
|
int bound_sign = (is_lower_bound ? 1 : -1);
|
|
int j_sign = (coeff_before_j_is_pos ? 1 : -1) * bound_sign;
|
|
|
|
SASSERT(!tv::is_term(bound_j));
|
|
u_dependency* ret = nullptr;
|
|
for (auto const& r : lar->get_row(row_index)) {
|
|
unsigned j = r.var();
|
|
if (j == bound_j)
|
|
continue;
|
|
mpq const& a = r.coeff();
|
|
int a_sign = is_pos(a) ? 1 : -1;
|
|
int sign = j_sign * a_sign;
|
|
u_dependency* witness = sign > 0 ? lar->get_column_upper_bound_witness(j) : lar->get_column_lower_bound_witness(j);
|
|
ret = lar->join_deps(ret, witness);
|
|
}
|
|
return ret;
|
|
};
|
|
m_bp.add_bound(u, bound_j, is_lower_bound, strict, explain);
|
|
}
|
|
|
|
void advance_u(unsigned j) {
|
|
m_column_of_u = (m_column_of_u == -1) ? j : -2;
|
|
}
|
|
|
|
void advance_l(unsigned j) {
|
|
m_column_of_l = (m_column_of_l == -1) ? j : -2;
|
|
}
|
|
|
|
void analyze_bound_on_var_on_coeff(int j, const mpq &a) {
|
|
switch (m_bp.get_column_type(j)) {
|
|
case column_type::lower_bound:
|
|
if (numeric_traits<mpq>::is_pos(a))
|
|
advance_u(j);
|
|
else
|
|
advance_l(j);
|
|
break;
|
|
case column_type::upper_bound:
|
|
if (numeric_traits<mpq>::is_neg(a))
|
|
advance_u(j);
|
|
else
|
|
advance_l(j);
|
|
break;
|
|
case column_type::free_column:
|
|
advance_u(j);
|
|
advance_l(j);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
};
|
|
|
|
|
|
}
|
|
|