mirror of
https://github.com/Z3Prover/z3
synced 2025-04-15 05:18:44 +00:00
237 lines
7.1 KiB
C++
237 lines
7.1 KiB
C++
/*++
|
|
Copyright (c) 2017 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
<name>
|
|
|
|
Abstract:
|
|
|
|
<abstract>
|
|
|
|
Author:
|
|
Lev Nachmanson (levnach)
|
|
|
|
Revision History:
|
|
|
|
|
|
--*/
|
|
#pragma once
|
|
#include "math/lp/lar_term.h"
|
|
#include "math/lp/hnf.h"
|
|
#include "math/lp/general_matrix.h"
|
|
#include "math/lp/var_register.h"
|
|
#include "math/lp/lia_move.h"
|
|
#include "math/lp/explanation.h"
|
|
|
|
namespace lp {
|
|
class hnf_cutter {
|
|
general_matrix m_A;
|
|
vector<const lar_term*> m_terms;
|
|
vector<bool> m_terms_upper;
|
|
svector<constraint_index> m_constraints_for_explanation;
|
|
vector<mpq> m_right_sides;
|
|
lp_settings & m_settings;
|
|
mpq m_abs_max;
|
|
bool m_overflow;
|
|
var_register m_var_register;
|
|
public:
|
|
|
|
const mpq & abs_max() const { return m_abs_max; }
|
|
|
|
hnf_cutter(lp_settings & settings) : m_settings(settings),
|
|
m_abs_max(zero_of_type<mpq>()),
|
|
m_var_register(0) {}
|
|
|
|
unsigned terms_count() const {
|
|
return m_terms.size();
|
|
}
|
|
|
|
const vector<const lar_term*>& terms() const { return m_terms; }
|
|
const svector<unsigned>& constraints_for_explanation() const {
|
|
return m_constraints_for_explanation;
|
|
}
|
|
const vector<mpq> & right_sides() const { return m_right_sides; }
|
|
void clear() {
|
|
// m_A will be filled from scratch in init_matrix_A
|
|
m_var_register.clear();
|
|
m_terms.clear();
|
|
m_terms_upper.clear();
|
|
m_constraints_for_explanation.clear();
|
|
m_right_sides.clear();
|
|
m_abs_max = zero_of_type<mpq>();
|
|
m_overflow = false;
|
|
}
|
|
void add_term(const lar_term* t, const mpq &rs, constraint_index ci, bool upper_bound) {
|
|
m_terms.push_back(t);
|
|
m_terms_upper.push_back(upper_bound);
|
|
if (upper_bound)
|
|
m_right_sides.push_back(rs);
|
|
else
|
|
m_right_sides.push_back(-rs);
|
|
|
|
m_constraints_for_explanation.push_back(ci);
|
|
|
|
for (const auto &p : *t) {
|
|
m_var_register.add_var(p.var());
|
|
mpq t = abs(ceil(p.coeff()));
|
|
if (t > m_abs_max)
|
|
m_abs_max = t;
|
|
}
|
|
}
|
|
|
|
void print(std::ostream & out) {
|
|
out << "terms = " << m_terms.size() << ", var = " << m_var_register.size() << std::endl;
|
|
}
|
|
|
|
void initialize_row(unsigned i) {
|
|
mpq sign = m_terms_upper[i]? one_of_type<mpq>(): - one_of_type<mpq>();
|
|
m_A.init_row_from_container(i, * m_terms[i], [this](unsigned j) { return m_var_register.add_var(j);}, sign);
|
|
}
|
|
|
|
void init_matrix_A() {
|
|
m_A = general_matrix(terms_count(), vars().size());
|
|
for (unsigned i = 0; i < terms_count(); i++)
|
|
initialize_row(i);
|
|
}
|
|
|
|
// todo: as we need only one row i with non integral b[i] need to optimize later
|
|
void find_h_minus_1_b(const general_matrix& H, vector<mpq> & b) {
|
|
// the solution will be put into b
|
|
for (unsigned i = 0; i < H.row_count() ;i++) {
|
|
for (unsigned j = 0; j < i; j++) {
|
|
b[i] -= H[i][j]*b[j];
|
|
}
|
|
b[i] /= H[i][i];
|
|
// consider return from here if b[i] is not an integer and return i
|
|
}
|
|
}
|
|
|
|
vector<mpq> create_b(const svector<unsigned> & basis_rows) {
|
|
if (basis_rows.size() == m_right_sides.size())
|
|
return m_right_sides;
|
|
vector<mpq> b;
|
|
for (unsigned i : basis_rows) {
|
|
b.push_back(m_right_sides[i]);
|
|
}
|
|
return b;
|
|
}
|
|
|
|
int find_cut_row_index(const vector<mpq> & b) {
|
|
int ret = -1;
|
|
int n = 0;
|
|
for (int i = 0; i < static_cast<int>(b.size()); i++) {
|
|
if (is_integer(b[i])) continue;
|
|
if (n == 0 ) {
|
|
lp_assert(ret == -1);
|
|
n = 1;
|
|
ret = i;
|
|
} else {
|
|
if (m_settings.random_next() % (++n) == 0) {
|
|
ret = i;
|
|
}
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
// fills e_i*H_minus_1
|
|
void get_ei_H_minus_1(unsigned i, const general_matrix& H, vector<mpq> & row) {
|
|
// we solve x = ei * H_min_1
|
|
// or x * H = ei
|
|
unsigned m = H.row_count();
|
|
for (unsigned k = i + 1; k < m; k++) {
|
|
row[k] = zero_of_type<mpq>();
|
|
}
|
|
row[i] = one_of_type<mpq>() / H[i][i];
|
|
for(int k = i - 1; k >= 0; k--) {
|
|
mpq t = zero_of_type<mpq>();
|
|
for (unsigned l = k + 1; l <= i; l++) {
|
|
t += H[l][k]*row[l];
|
|
}
|
|
row[k] = -t / H[k][k];
|
|
}
|
|
|
|
// // test region
|
|
// vector<mpq> ei(H.row_count(), zero_of_type<mpq>());
|
|
// ei[i] = one_of_type<mpq>();
|
|
// vector<mpq> pr = row * H;
|
|
// pr.shrink(ei.size());
|
|
// lp_assert(ei == pr);
|
|
// // end test region
|
|
|
|
}
|
|
|
|
void fill_term(const vector<mpq> & row, lar_term& t) {
|
|
for (unsigned j = 0; j < row.size(); j++) {
|
|
if (!is_zero(row[j]))
|
|
t.add_coeff_var(row[j], m_var_register.local_to_external(j));
|
|
}
|
|
}
|
|
#ifdef Z3DEBUG
|
|
vector<mpq> transform_to_local_columns(const vector<impq> & x) const {
|
|
vector<mpq> ret;
|
|
for (unsigned j = 0; j < vars().size(); j++) {
|
|
ret.push_back(x[m_var_register.local_to_external(j)].x);
|
|
}
|
|
return ret;
|
|
}
|
|
#endif
|
|
void shrink_explanation(const svector<unsigned>& basis_rows) {
|
|
svector<unsigned> new_expl;
|
|
for (unsigned i : basis_rows) {
|
|
new_expl.push_back(m_constraints_for_explanation[i]);
|
|
}
|
|
m_constraints_for_explanation = new_expl;
|
|
}
|
|
|
|
bool overflow() const { return m_overflow; }
|
|
|
|
lia_move create_cut(lar_term& t, mpq& k, explanation* ex, bool & upper, const vector<mpq> & x0) {
|
|
// we suppose that x0 has at least one non integer element
|
|
(void)x0;
|
|
|
|
init_matrix_A();
|
|
svector<unsigned> basis_rows;
|
|
mpq big_number = m_abs_max.expt(3);
|
|
mpq d = hnf_calc::determinant_of_rectangular_matrix(m_A, basis_rows, big_number);
|
|
|
|
if (d >= big_number) {
|
|
return lia_move::undef;
|
|
}
|
|
|
|
if (m_settings.get_cancel_flag()) {
|
|
return lia_move::undef;
|
|
}
|
|
|
|
if (basis_rows.size() < m_A.row_count()) {
|
|
m_A.shrink_to_rank(basis_rows);
|
|
shrink_explanation(basis_rows);
|
|
}
|
|
|
|
hnf<general_matrix> h(m_A, d);
|
|
vector<mpq> b = create_b(basis_rows);
|
|
lp_assert(m_A * x0 == b);
|
|
find_h_minus_1_b(h.W(), b);
|
|
int cut_row = find_cut_row_index(b);
|
|
|
|
if (cut_row == -1) {
|
|
return lia_move::undef;
|
|
}
|
|
|
|
// the matrix is not square - we can get
|
|
// all integers in b's projection
|
|
|
|
vector<mpq> row(m_A.column_count());
|
|
get_ei_H_minus_1(cut_row, h.W(), row);
|
|
vector<mpq> f = row * m_A;
|
|
fill_term(f, t);
|
|
k = floor(b[cut_row]);
|
|
upper = true;
|
|
return lia_move::cut;
|
|
}
|
|
|
|
svector<unsigned> vars() const { return m_var_register.vars(); }
|
|
};
|
|
}
|