3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-15 05:18:44 +00:00
z3/src/math/lp/hnf_cutter.h
Lev Nachmanson 33cbd29ed0 mv util/lp to math/lp
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
2020-01-28 10:04:21 -08:00

237 lines
7.1 KiB
C++

/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
<name>
Abstract:
<abstract>
Author:
Lev Nachmanson (levnach)
Revision History:
--*/
#pragma once
#include "math/lp/lar_term.h"
#include "math/lp/hnf.h"
#include "math/lp/general_matrix.h"
#include "math/lp/var_register.h"
#include "math/lp/lia_move.h"
#include "math/lp/explanation.h"
namespace lp {
class hnf_cutter {
general_matrix m_A;
vector<const lar_term*> m_terms;
vector<bool> m_terms_upper;
svector<constraint_index> m_constraints_for_explanation;
vector<mpq> m_right_sides;
lp_settings & m_settings;
mpq m_abs_max;
bool m_overflow;
var_register m_var_register;
public:
const mpq & abs_max() const { return m_abs_max; }
hnf_cutter(lp_settings & settings) : m_settings(settings),
m_abs_max(zero_of_type<mpq>()),
m_var_register(0) {}
unsigned terms_count() const {
return m_terms.size();
}
const vector<const lar_term*>& terms() const { return m_terms; }
const svector<unsigned>& constraints_for_explanation() const {
return m_constraints_for_explanation;
}
const vector<mpq> & right_sides() const { return m_right_sides; }
void clear() {
// m_A will be filled from scratch in init_matrix_A
m_var_register.clear();
m_terms.clear();
m_terms_upper.clear();
m_constraints_for_explanation.clear();
m_right_sides.clear();
m_abs_max = zero_of_type<mpq>();
m_overflow = false;
}
void add_term(const lar_term* t, const mpq &rs, constraint_index ci, bool upper_bound) {
m_terms.push_back(t);
m_terms_upper.push_back(upper_bound);
if (upper_bound)
m_right_sides.push_back(rs);
else
m_right_sides.push_back(-rs);
m_constraints_for_explanation.push_back(ci);
for (const auto &p : *t) {
m_var_register.add_var(p.var());
mpq t = abs(ceil(p.coeff()));
if (t > m_abs_max)
m_abs_max = t;
}
}
void print(std::ostream & out) {
out << "terms = " << m_terms.size() << ", var = " << m_var_register.size() << std::endl;
}
void initialize_row(unsigned i) {
mpq sign = m_terms_upper[i]? one_of_type<mpq>(): - one_of_type<mpq>();
m_A.init_row_from_container(i, * m_terms[i], [this](unsigned j) { return m_var_register.add_var(j);}, sign);
}
void init_matrix_A() {
m_A = general_matrix(terms_count(), vars().size());
for (unsigned i = 0; i < terms_count(); i++)
initialize_row(i);
}
// todo: as we need only one row i with non integral b[i] need to optimize later
void find_h_minus_1_b(const general_matrix& H, vector<mpq> & b) {
// the solution will be put into b
for (unsigned i = 0; i < H.row_count() ;i++) {
for (unsigned j = 0; j < i; j++) {
b[i] -= H[i][j]*b[j];
}
b[i] /= H[i][i];
// consider return from here if b[i] is not an integer and return i
}
}
vector<mpq> create_b(const svector<unsigned> & basis_rows) {
if (basis_rows.size() == m_right_sides.size())
return m_right_sides;
vector<mpq> b;
for (unsigned i : basis_rows) {
b.push_back(m_right_sides[i]);
}
return b;
}
int find_cut_row_index(const vector<mpq> & b) {
int ret = -1;
int n = 0;
for (int i = 0; i < static_cast<int>(b.size()); i++) {
if (is_integer(b[i])) continue;
if (n == 0 ) {
lp_assert(ret == -1);
n = 1;
ret = i;
} else {
if (m_settings.random_next() % (++n) == 0) {
ret = i;
}
}
}
return ret;
}
// fills e_i*H_minus_1
void get_ei_H_minus_1(unsigned i, const general_matrix& H, vector<mpq> & row) {
// we solve x = ei * H_min_1
// or x * H = ei
unsigned m = H.row_count();
for (unsigned k = i + 1; k < m; k++) {
row[k] = zero_of_type<mpq>();
}
row[i] = one_of_type<mpq>() / H[i][i];
for(int k = i - 1; k >= 0; k--) {
mpq t = zero_of_type<mpq>();
for (unsigned l = k + 1; l <= i; l++) {
t += H[l][k]*row[l];
}
row[k] = -t / H[k][k];
}
// // test region
// vector<mpq> ei(H.row_count(), zero_of_type<mpq>());
// ei[i] = one_of_type<mpq>();
// vector<mpq> pr = row * H;
// pr.shrink(ei.size());
// lp_assert(ei == pr);
// // end test region
}
void fill_term(const vector<mpq> & row, lar_term& t) {
for (unsigned j = 0; j < row.size(); j++) {
if (!is_zero(row[j]))
t.add_coeff_var(row[j], m_var_register.local_to_external(j));
}
}
#ifdef Z3DEBUG
vector<mpq> transform_to_local_columns(const vector<impq> & x) const {
vector<mpq> ret;
for (unsigned j = 0; j < vars().size(); j++) {
ret.push_back(x[m_var_register.local_to_external(j)].x);
}
return ret;
}
#endif
void shrink_explanation(const svector<unsigned>& basis_rows) {
svector<unsigned> new_expl;
for (unsigned i : basis_rows) {
new_expl.push_back(m_constraints_for_explanation[i]);
}
m_constraints_for_explanation = new_expl;
}
bool overflow() const { return m_overflow; }
lia_move create_cut(lar_term& t, mpq& k, explanation* ex, bool & upper, const vector<mpq> & x0) {
// we suppose that x0 has at least one non integer element
(void)x0;
init_matrix_A();
svector<unsigned> basis_rows;
mpq big_number = m_abs_max.expt(3);
mpq d = hnf_calc::determinant_of_rectangular_matrix(m_A, basis_rows, big_number);
if (d >= big_number) {
return lia_move::undef;
}
if (m_settings.get_cancel_flag()) {
return lia_move::undef;
}
if (basis_rows.size() < m_A.row_count()) {
m_A.shrink_to_rank(basis_rows);
shrink_explanation(basis_rows);
}
hnf<general_matrix> h(m_A, d);
vector<mpq> b = create_b(basis_rows);
lp_assert(m_A * x0 == b);
find_h_minus_1_b(h.W(), b);
int cut_row = find_cut_row_index(b);
if (cut_row == -1) {
return lia_move::undef;
}
// the matrix is not square - we can get
// all integers in b's projection
vector<mpq> row(m_A.column_count());
get_ei_H_minus_1(cut_row, h.W(), row);
vector<mpq> f = row * m_A;
fill_term(f, t);
k = floor(b[cut_row]);
upper = true;
return lia_move::cut;
}
svector<unsigned> vars() const { return m_var_register.vars(); }
};
}