mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 01:24:08 +00:00
1441 lines
46 KiB
C++
1441 lines
46 KiB
C++
/*++
|
|
Copyright (c) 2015 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
qsat.cpp
|
|
|
|
Abstract:
|
|
|
|
Quantifier Satisfiability Solver.
|
|
|
|
Author:
|
|
|
|
Nikolaj Bjorner (nbjorner) 2015-5-28
|
|
|
|
Revision History:
|
|
|
|
Notes:
|
|
|
|
|
|
--*/
|
|
|
|
#include "ast/expr_abstract.h"
|
|
#include "ast/ast_util.h"
|
|
#include "ast/rewriter/quant_hoist.h"
|
|
#include "ast/ast_pp.h"
|
|
#include "ast/rewriter/th_rewriter.h"
|
|
#include "ast/rewriter/expr_replacer.h"
|
|
#include "model/model_v2_pp.h"
|
|
#include "model/model_evaluator.h"
|
|
#include "smt/smt_kernel.h"
|
|
#include "smt/params/smt_params.h"
|
|
#include "smt/smt_solver.h"
|
|
#include "solver/solver.h"
|
|
#include "solver/mus.h"
|
|
#include "qe/qsat.h"
|
|
#include "qe/qe_mbp.h"
|
|
#include "qe/qe.h"
|
|
#include "ast/rewriter/label_rewriter.h"
|
|
|
|
namespace qe {
|
|
|
|
pred_abs::pred_abs(ast_manager& m):
|
|
m(m),
|
|
m_asms(m),
|
|
m_trail(m),
|
|
m_fmc(alloc(generic_model_converter, m, "qsat"))
|
|
{
|
|
}
|
|
|
|
generic_model_converter* pred_abs::fmc() {
|
|
return m_fmc.get();
|
|
}
|
|
|
|
void pred_abs::reset() {
|
|
m_trail.reset();
|
|
dec_keys<expr>(m_pred2lit);
|
|
dec_keys<app>(m_lit2pred);
|
|
dec_keys<app>(m_asm2pred);
|
|
dec_keys<expr>(m_pred2asm);
|
|
m_lit2pred.reset();
|
|
m_pred2lit.reset();
|
|
m_asm2pred.reset();
|
|
m_pred2asm.reset();
|
|
m_elevel.reset();
|
|
m_asms.reset();
|
|
m_asms_lim.reset();
|
|
m_preds.reset();
|
|
}
|
|
|
|
max_level pred_abs::compute_level(app* e) {
|
|
unsigned sz0 = todo.size();
|
|
todo.push_back(e);
|
|
while (sz0 != todo.size()) {
|
|
app* a = to_app(todo.back());
|
|
if (m_elevel.contains(a)) {
|
|
todo.pop_back();
|
|
continue;
|
|
}
|
|
max_level lvl, lvl0;
|
|
bool has_new = false;
|
|
if (m_flevel.find(a->get_decl(), lvl)) {
|
|
lvl0.merge(lvl);
|
|
}
|
|
for (unsigned i = 0; i < a->get_num_args(); ++i) {
|
|
app* arg = to_app(a->get_arg(i));
|
|
if (m_elevel.find(arg, lvl)) {
|
|
lvl0.merge(lvl);
|
|
}
|
|
else {
|
|
todo.push_back(arg);
|
|
has_new = true;
|
|
}
|
|
}
|
|
if (!has_new) {
|
|
m_elevel.insert(a, lvl0);
|
|
todo.pop_back();
|
|
}
|
|
}
|
|
return m_elevel.find(e);
|
|
}
|
|
|
|
void pred_abs::add_pred(app* p, app* lit) {
|
|
m.inc_ref(p);
|
|
m_pred2lit.insert(p, lit);
|
|
add_lit(p, lit);
|
|
}
|
|
|
|
void pred_abs::add_lit(app* p, app* lit) {
|
|
if (!m_lit2pred.contains(lit)) {
|
|
m.inc_ref(lit);
|
|
m_lit2pred.insert(lit, p);
|
|
}
|
|
}
|
|
|
|
void pred_abs::add_asm(app* p, expr* assum) {
|
|
SASSERT(!m_asm2pred.contains(assum));
|
|
m.inc_ref(p);
|
|
m.inc_ref(assum);
|
|
m_asm2pred.insert(assum, p);
|
|
m_pred2asm.insert(p, assum);
|
|
}
|
|
|
|
void pred_abs::push() {
|
|
m_asms_lim.push_back(m_asms.size());
|
|
}
|
|
|
|
void pred_abs::pop(unsigned num_scopes) {
|
|
unsigned l = m_asms_lim.size() - num_scopes;
|
|
m_asms.resize(m_asms_lim[l]);
|
|
m_asms_lim.shrink(l);
|
|
}
|
|
|
|
void pred_abs::insert(app* a, max_level const& lvl) {
|
|
unsigned l = lvl.max();
|
|
if (l == UINT_MAX) l = 0;
|
|
while (m_preds.size() <= l) {
|
|
m_preds.push_back(app_ref_vector(m));
|
|
}
|
|
m_preds[l].push_back(a);
|
|
}
|
|
|
|
bool pred_abs::is_predicate(app* a, unsigned l) {
|
|
max_level lvl1;
|
|
return m_flevel.find(a->get_decl(), lvl1) && lvl1.max() < l;
|
|
}
|
|
|
|
void pred_abs::get_assumptions(model* mdl, expr_ref_vector& asms) {
|
|
unsigned level = m_asms_lim.size();
|
|
if (level > m_preds.size()) {
|
|
level = m_preds.size();
|
|
}
|
|
if (!mdl) {
|
|
asms.append(m_asms);
|
|
return;
|
|
}
|
|
if (level == 0) {
|
|
return;
|
|
}
|
|
model_evaluator eval(*mdl);
|
|
eval.set_model_completion(true);
|
|
TRACE("qe", model_v2_pp(tout, *mdl););
|
|
|
|
expr_ref val(m);
|
|
for (unsigned j = 0; j < m_preds[level - 1].size(); ++j) {
|
|
app* p = m_preds[level - 1][j].get();
|
|
TRACE("qe", tout << "process level: " << level - 1 << ": " << mk_pp(p, m) << "\n";);
|
|
|
|
eval(p, val);
|
|
|
|
if (m.is_false(val)) {
|
|
m_asms.push_back(m.mk_not(p));
|
|
}
|
|
else {
|
|
SASSERT(m.is_true(val));
|
|
m_asms.push_back(p);
|
|
}
|
|
}
|
|
asms.append(m_asms);
|
|
|
|
for (unsigned i = level + 1; i < m_preds.size(); i += 2) {
|
|
for (unsigned j = 0; j < m_preds[i].size(); ++j) {
|
|
app* p = m_preds[i][j].get();
|
|
max_level lvl = m_elevel.find(p);
|
|
bool use =
|
|
(lvl.m_fa == i && (lvl.m_ex == UINT_MAX || lvl.m_ex < level)) ||
|
|
(lvl.m_ex == i && (lvl.m_fa == UINT_MAX || lvl.m_fa < level));
|
|
if (use) {
|
|
eval(p, val);
|
|
if (m.is_false(val)) {
|
|
asms.push_back(m.mk_not(p));
|
|
}
|
|
else {
|
|
asms.push_back(p);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
TRACE("qe", tout << "level: " << level << "\n";
|
|
model_v2_pp(tout, *mdl);
|
|
display(tout, asms););
|
|
}
|
|
|
|
void pred_abs::set_expr_level(app* v, max_level const& lvl) {
|
|
m_elevel.insert(v, lvl);
|
|
}
|
|
|
|
void pred_abs::set_decl_level(func_decl* f, max_level const& lvl) {
|
|
m_flevel.insert(f, lvl);
|
|
}
|
|
|
|
void pred_abs::abstract_atoms(expr* fml, expr_ref_vector& defs) {
|
|
max_level level;
|
|
abstract_atoms(fml, level, defs);
|
|
}
|
|
/**
|
|
\brief create propositional abstraction of formula by replacing atomic sub-formulas by fresh
|
|
propositional variables, and adding definitions for each propositional formula on the side.
|
|
Assumption is that the formula is quantifier-free.
|
|
*/
|
|
void pred_abs::abstract_atoms(expr* fml, max_level& level, expr_ref_vector& defs) {
|
|
expr_mark mark;
|
|
ptr_vector<expr> args;
|
|
app_ref r(m), eq(m);
|
|
app* p;
|
|
unsigned sz0 = todo.size();
|
|
todo.push_back(fml);
|
|
m_trail.push_back(fml);
|
|
max_level l;
|
|
while (sz0 != todo.size()) {
|
|
app* a = to_app(todo.back());
|
|
todo.pop_back();
|
|
if (mark.is_marked(a)) {
|
|
continue;
|
|
}
|
|
|
|
mark.mark(a);
|
|
if (m_lit2pred.find(a, p)) {
|
|
TRACE("qe", tout << mk_pp(a, m) << " " << mk_pp(p, m) << "\n";);
|
|
level.merge(m_elevel.find(p));
|
|
continue;
|
|
}
|
|
|
|
if (is_uninterp_const(a) && m.is_bool(a)) {
|
|
l = m_elevel.find(a);
|
|
level.merge(l);
|
|
if (!m_pred2lit.contains(a)) {
|
|
add_pred(a, a);
|
|
insert(a, l);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
unsigned sz = a->get_num_args();
|
|
for (unsigned i = 0; i < sz; ++i) {
|
|
expr* f = a->get_arg(i);
|
|
if (!mark.is_marked(f)) {
|
|
todo.push_back(f);
|
|
}
|
|
}
|
|
|
|
bool is_boolop =
|
|
(a->get_family_id() == m.get_basic_family_id()) &&
|
|
(!m.is_eq(a) || m.is_bool(a->get_arg(0))) &&
|
|
(!m.is_distinct(a) || m.is_bool(a->get_arg(0)));
|
|
|
|
if (!is_boolop && m.is_bool(a)) {
|
|
TRACE("qe", tout << mk_pp(a, m) << "\n";);
|
|
r = fresh_bool("p");
|
|
max_level l = compute_level(a);
|
|
add_pred(r, a);
|
|
m_elevel.insert(r, l);
|
|
eq = m.mk_eq(r, a);
|
|
defs.push_back(eq);
|
|
if (!is_predicate(a, l.max())) {
|
|
insert(r, l);
|
|
}
|
|
level.merge(l);
|
|
}
|
|
}
|
|
}
|
|
|
|
app_ref pred_abs::fresh_bool(char const* name) {
|
|
app_ref r(m.mk_fresh_const(name, m.mk_bool_sort()), m);
|
|
m_fmc->hide(r);
|
|
return r;
|
|
}
|
|
|
|
|
|
// optional pass to replace atoms by predicates
|
|
// so that SMT core works on propositional
|
|
// abstraction only.
|
|
expr_ref pred_abs::mk_abstract(expr* fml) {
|
|
expr_ref_vector trail(m), args(m);
|
|
obj_map<expr, expr*> cache;
|
|
app* b;
|
|
expr_ref r(m);
|
|
unsigned sz0 = todo.size();
|
|
todo.push_back(fml);
|
|
while (sz0 != todo.size()) {
|
|
app* a = to_app(todo.back());
|
|
if (cache.contains(a)) {
|
|
todo.pop_back();
|
|
continue;
|
|
}
|
|
if (m_lit2pred.find(a, b)) {
|
|
cache.insert(a, b);
|
|
todo.pop_back();
|
|
continue;
|
|
}
|
|
unsigned sz = a->get_num_args();
|
|
bool diff = false;
|
|
args.reset();
|
|
for (unsigned i = 0; i < sz; ++i) {
|
|
expr* f = a->get_arg(i), *f1;
|
|
if (cache.find(f, f1)) {
|
|
args.push_back(f1);
|
|
diff |= f != f1;
|
|
}
|
|
else {
|
|
todo.push_back(f);
|
|
}
|
|
}
|
|
if (sz == args.size()) {
|
|
if (diff) {
|
|
r = m.mk_app(a->get_decl(), sz, args.c_ptr());
|
|
trail.push_back(r);
|
|
}
|
|
else {
|
|
r = a;
|
|
}
|
|
cache.insert(a, r);
|
|
todo.pop_back();
|
|
}
|
|
}
|
|
return expr_ref(cache.find(fml), m);
|
|
}
|
|
|
|
expr_ref pred_abs::mk_assumption_literal(expr* a, model* mdl, max_level const& lvl, expr_ref_vector& defs) {
|
|
expr_ref A(m);
|
|
A = pred2asm(a);
|
|
a = A;
|
|
app_ref p(m);
|
|
expr_ref q(m), fml(m);
|
|
app *b;
|
|
expr *c, *d;
|
|
max_level lvl2;
|
|
TRACE("qe", tout << mk_pp(a, m) << " " << lvl << "\n";);
|
|
if (m_asm2pred.find(a, b)) {
|
|
q = b;
|
|
}
|
|
else if (m.is_not(a, c) && m_asm2pred.find(c, b)) {
|
|
q = m.mk_not(b);
|
|
}
|
|
else if (m_pred2asm.find(a, d)) {
|
|
q = a;
|
|
}
|
|
else if (m.is_not(a, c) && m_pred2asm.find(c, d)) {
|
|
q = a;
|
|
}
|
|
else {
|
|
p = fresh_bool("def");
|
|
if (m.is_not(a, a)) {
|
|
if (mdl)
|
|
mdl->register_decl(p->get_decl(), m.mk_false());
|
|
q = m.mk_not(p);
|
|
}
|
|
else {
|
|
if (mdl)
|
|
mdl->register_decl(p->get_decl(), m.mk_true());
|
|
q = p;
|
|
}
|
|
m_elevel.insert(p, lvl);
|
|
insert(p, lvl);
|
|
fml = a;
|
|
abstract_atoms(fml, lvl2, defs);
|
|
fml = mk_abstract(fml);
|
|
defs.push_back(m.mk_eq(p, fml));
|
|
add_asm(p, a);
|
|
TRACE("qe", tout << mk_pp(a, m) << " |-> " << p << "\n";);
|
|
}
|
|
return q;
|
|
}
|
|
|
|
void pred_abs::mk_concrete(expr_ref_vector& fmls, obj_map<expr,expr*> const& map) {
|
|
obj_map<expr,expr*> cache;
|
|
expr_ref_vector trail(m);
|
|
expr* p;
|
|
app_ref r(m);
|
|
ptr_vector<expr> args;
|
|
unsigned sz0 = todo.size();
|
|
todo.append(fmls.size(), (expr*const*)fmls.c_ptr());
|
|
while (sz0 != todo.size()) {
|
|
app* a = to_app(todo.back());
|
|
if (cache.contains(a)) {
|
|
todo.pop_back();
|
|
continue;
|
|
}
|
|
if (map.find(a, p)) {
|
|
cache.insert(a, p);
|
|
todo.pop_back();
|
|
continue;
|
|
}
|
|
unsigned sz = a->get_num_args();
|
|
args.reset();
|
|
bool diff = false;
|
|
for (unsigned i = 0; i < sz; ++i) {
|
|
expr* f = a->get_arg(i), *f1;
|
|
if (cache.find(f, f1)) {
|
|
args.push_back(f1);
|
|
diff |= f != f1;
|
|
}
|
|
else {
|
|
todo.push_back(f);
|
|
}
|
|
}
|
|
if (args.size() == sz) {
|
|
if (diff) {
|
|
r = m.mk_app(a->get_decl(), sz, args.c_ptr());
|
|
}
|
|
else {
|
|
r = to_app(a);
|
|
}
|
|
cache.insert(a, r);
|
|
trail.push_back(r);
|
|
todo.pop_back();
|
|
}
|
|
}
|
|
for (unsigned i = 0; i < fmls.size(); ++i) {
|
|
fmls[i] = to_app(cache.find(fmls[i].get()));
|
|
}
|
|
}
|
|
|
|
void pred_abs::pred2lit(expr_ref_vector& fmls) {
|
|
mk_concrete(fmls, m_pred2lit);
|
|
}
|
|
|
|
expr_ref pred_abs::pred2asm(expr* fml) {
|
|
expr_ref_vector fmls(m);
|
|
fmls.push_back(fml);
|
|
mk_concrete(fmls, m_pred2asm);
|
|
return mk_and(fmls);
|
|
}
|
|
|
|
void pred_abs::collect_statistics(statistics& st) const {
|
|
st.update("qsat num predicates", m_pred2lit.size());
|
|
}
|
|
|
|
void pred_abs::display(std::ostream& out) const {
|
|
out << "pred2lit:\n";
|
|
obj_map<expr, expr*>::iterator it = m_pred2lit.begin(), end = m_pred2lit.end();
|
|
for (; it != end; ++it) {
|
|
out << mk_pp(it->m_key, m) << " |-> " << mk_pp(it->m_value, m) << "\n";
|
|
}
|
|
for (unsigned i = 0; i < m_preds.size(); ++i) {
|
|
out << "level " << i << "\n";
|
|
for (unsigned j = 0; j < m_preds[i].size(); ++j) {
|
|
app* p = m_preds[i][j];
|
|
expr* e;
|
|
if (m_pred2lit.find(p, e)) {
|
|
out << mk_pp(p, m) << " := " << mk_pp(e, m) << "\n";
|
|
}
|
|
else {
|
|
out << mk_pp(p, m) << "\n";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void pred_abs::display(std::ostream& out, expr_ref_vector const& asms) const {
|
|
max_level lvl;
|
|
for (unsigned i = 0; i < asms.size(); ++i) {
|
|
expr* e = asms[i];
|
|
bool is_not = m.is_not(asms[i], e);
|
|
out << mk_pp(asms[i], m);
|
|
if (m_elevel.find(e, lvl)) {
|
|
lvl.display(out << " - ");
|
|
}
|
|
if (m_pred2lit.find(e, e)) {
|
|
out << " : " << (is_not?"!":"") << mk_pp(e, m);
|
|
}
|
|
out << "\n";
|
|
}
|
|
}
|
|
|
|
void pred_abs::get_free_vars(expr* fml, app_ref_vector& vars) {
|
|
ast_fast_mark1 mark;
|
|
unsigned sz0 = todo.size();
|
|
todo.push_back(fml);
|
|
while (sz0 != todo.size()) {
|
|
expr* e = todo.back();
|
|
todo.pop_back();
|
|
if (mark.is_marked(e) || is_var(e)) {
|
|
continue;
|
|
}
|
|
mark.mark(e);
|
|
if (is_quantifier(e)) {
|
|
todo.push_back(to_quantifier(e)->get_expr());
|
|
continue;
|
|
}
|
|
SASSERT(is_app(e));
|
|
app* a = to_app(e);
|
|
if (is_uninterp_const(a)) { // TBD generalize for uninterpreted functions.
|
|
vars.push_back(a);
|
|
}
|
|
for (unsigned i = 0; i < a->get_num_args(); ++i) {
|
|
todo.push_back(a->get_arg(i));
|
|
}
|
|
}
|
|
}
|
|
|
|
bool pred_abs::validate_defs(model& model) const {
|
|
bool valid = true;
|
|
obj_map<expr, expr*>::iterator it = m_pred2lit.begin(), end = m_pred2lit.end();
|
|
for (; it != end; ++it) {
|
|
expr_ref val_a(m), val_b(m);
|
|
expr* a = it->m_key;
|
|
expr* b = it->m_value;
|
|
val_a = model(a);
|
|
val_b = model(b);
|
|
if (val_a != val_b) {
|
|
TRACE("qe",
|
|
tout << mk_pp(a, m) << " := " << val_a << "\n";
|
|
tout << mk_pp(b, m) << " := " << val_b << "\n";
|
|
tout << m_elevel.find(a) << "\n";);
|
|
valid = false;
|
|
}
|
|
}
|
|
return valid;
|
|
}
|
|
|
|
class kernel {
|
|
ast_manager& m;
|
|
params_ref m_params;
|
|
ref<solver> m_solver;
|
|
|
|
public:
|
|
kernel(ast_manager& m):
|
|
m(m),
|
|
m_solver(mk_smt_solver(m, m_params, symbol::null))
|
|
{
|
|
m_params.set_bool("model", true);
|
|
m_params.set_uint("relevancy_lvl", 0);
|
|
m_params.set_uint("case_split_strategy", CS_ACTIVITY_WITH_CACHE);
|
|
m_solver->updt_params(m_params);
|
|
}
|
|
|
|
|
|
solver& s() { return *m_solver; }
|
|
solver const& s() const { return *m_solver; }
|
|
|
|
void reset() {
|
|
m_solver = mk_smt_solver(m, m_params, symbol::null);
|
|
}
|
|
void assert_expr(expr* e) {
|
|
m_solver->assert_expr(e);
|
|
}
|
|
|
|
void get_core(expr_ref_vector& core) {
|
|
core.reset();
|
|
m_solver->get_unsat_core(core);
|
|
TRACE("qe", m_solver->display(tout << "core: " << core << "\n") << "\n";);
|
|
}
|
|
};
|
|
|
|
enum qsat_mode {
|
|
qsat_qe,
|
|
qsat_qe_rec,
|
|
qsat_sat,
|
|
qsat_maximize
|
|
};
|
|
|
|
class qsat : public tactic {
|
|
|
|
struct stats {
|
|
unsigned m_num_rounds;
|
|
stats() { reset(); }
|
|
void reset() { memset(this, 0, sizeof(*this)); }
|
|
};
|
|
|
|
ast_manager& m;
|
|
params_ref m_params;
|
|
stats m_stats;
|
|
statistics m_st;
|
|
qe::mbp m_mbp;
|
|
kernel m_fa;
|
|
kernel m_ex;
|
|
pred_abs m_pred_abs;
|
|
expr_ref_vector m_answer;
|
|
expr_ref_vector m_asms;
|
|
vector<app_ref_vector> m_vars; // variables from alternating prefixes.
|
|
unsigned m_level;
|
|
model_ref m_model;
|
|
qsat_mode m_mode;
|
|
app_ref_vector m_avars; // variables to project
|
|
app_ref_vector m_free_vars;
|
|
app* m_objective;
|
|
opt::inf_eps* m_value;
|
|
bool m_was_sat;
|
|
model_ref m_model_save;
|
|
expr_ref m_gt;
|
|
opt::inf_eps m_value_save;
|
|
|
|
|
|
/**
|
|
\brief check alternating satisfiability.
|
|
Even levels are existential, odd levels are universal.
|
|
*/
|
|
lbool check_sat() {
|
|
while (true) {
|
|
++m_stats.m_num_rounds;
|
|
IF_VERBOSE(3, verbose_stream() << "(check-qsat level: " << m_level << " round: " << m_stats.m_num_rounds << ")\n";);
|
|
check_cancel();
|
|
expr_ref_vector asms(m_asms);
|
|
m_pred_abs.get_assumptions(m_model.get(), asms);
|
|
if (m_model.get()) {
|
|
validate_assumptions(*m_model.get(), asms);
|
|
}
|
|
TRACE("qe", tout << asms << "\n";);
|
|
solver& s = get_kernel(m_level).s();
|
|
lbool res = s.check_sat(asms);
|
|
switch (res) {
|
|
case l_true:
|
|
s.get_model(m_model);
|
|
SASSERT(validate_defs("check_sat"));
|
|
SASSERT(validate_assumptions(*m_model.get(), asms));
|
|
SASSERT(validate_model(asms));
|
|
TRACE("qe", s.display(tout); display(tout << "\n", *m_model.get()); display(tout, asms); );
|
|
if (m_level == 0) {
|
|
m_model_save = m_model;
|
|
}
|
|
push();
|
|
if (m_level == 1 && m_mode == qsat_maximize) {
|
|
maximize_model();
|
|
}
|
|
break;
|
|
case l_false:
|
|
switch (m_level) {
|
|
case 0:
|
|
return l_false;
|
|
case 1:
|
|
if (m_mode == qsat_sat) {
|
|
return l_true;
|
|
}
|
|
if (m_model.get()) {
|
|
SASSERT(validate_assumptions(*m_model.get(), asms));
|
|
if (!project_qe(asms)) return l_undef;
|
|
}
|
|
else {
|
|
pop(1);
|
|
}
|
|
break;
|
|
default:
|
|
if (m_model.get()) {
|
|
if (!project(asms)) return l_undef;
|
|
}
|
|
else {
|
|
pop(1);
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
case l_undef:
|
|
return res;
|
|
}
|
|
}
|
|
return l_undef;
|
|
}
|
|
|
|
kernel& get_kernel(unsigned j) {
|
|
if (is_exists(j)) {
|
|
return m_ex;
|
|
}
|
|
else {
|
|
return m_fa;
|
|
}
|
|
}
|
|
|
|
bool is_exists(unsigned level) const {
|
|
return (level % 2) == 0;
|
|
}
|
|
|
|
bool is_forall(unsigned level) const {
|
|
return is_exists(level+1);
|
|
}
|
|
|
|
void push() {
|
|
m_level++;
|
|
m_pred_abs.push();
|
|
}
|
|
|
|
void pop(unsigned num_scopes) {
|
|
m_model.reset();
|
|
SASSERT(num_scopes <= m_level);
|
|
m_pred_abs.pop(num_scopes);
|
|
m_level -= num_scopes;
|
|
}
|
|
|
|
void reset() override {
|
|
m_st.reset();
|
|
m_fa.s().collect_statistics(m_st);
|
|
m_ex.s().collect_statistics(m_st);
|
|
m_pred_abs.collect_statistics(m_st);
|
|
m_level = 0;
|
|
m_answer.reset();
|
|
m_asms.reset();
|
|
m_pred_abs.reset();
|
|
m_vars.reset();
|
|
m_model = nullptr;
|
|
m_fa.reset();
|
|
m_ex.reset();
|
|
m_free_vars.reset();
|
|
}
|
|
|
|
/**
|
|
\brief create a quantifier prefix formula.
|
|
*/
|
|
void hoist(expr_ref& fml) {
|
|
proof_ref pr(m);
|
|
label_rewriter rw(m);
|
|
rw.remove_labels(fml, pr);
|
|
quantifier_hoister hoist(m);
|
|
app_ref_vector vars(m);
|
|
bool is_forall = false;
|
|
m_pred_abs.get_free_vars(fml, vars);
|
|
m_vars.push_back(vars);
|
|
vars.reset();
|
|
if (m_mode != qsat_sat) {
|
|
is_forall = true;
|
|
hoist.pull_quantifier(is_forall, fml, vars);
|
|
m_vars.push_back(vars);
|
|
filter_vars(vars);
|
|
}
|
|
else {
|
|
hoist.pull_quantifier(is_forall, fml, vars);
|
|
m_vars.back().append(vars);
|
|
filter_vars(vars);
|
|
}
|
|
do {
|
|
is_forall = !is_forall;
|
|
vars.reset();
|
|
hoist.pull_quantifier(is_forall, fml, vars);
|
|
m_vars.push_back(vars);
|
|
filter_vars(vars);
|
|
}
|
|
while (!vars.empty());
|
|
SASSERT(m_vars.back().empty());
|
|
initialize_levels();
|
|
TRACE("qe", tout << fml << "\n";);
|
|
}
|
|
|
|
void filter_vars(app_ref_vector const& vars) {
|
|
for (app* v : vars) m_pred_abs.fmc()->hide(v);
|
|
}
|
|
|
|
void initialize_levels() {
|
|
// initialize levels.
|
|
for (unsigned i = 0; i < m_vars.size(); ++i) {
|
|
max_level lvl;
|
|
if (is_exists(i)) {
|
|
lvl.m_ex = i;
|
|
}
|
|
else {
|
|
lvl.m_fa = i;
|
|
}
|
|
for (unsigned j = 0; j < m_vars[i].size(); ++j) {
|
|
m_pred_abs.set_expr_level(m_vars[i][j].get(), lvl);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool validate_defs(char const* msg) {
|
|
if (m_model.get() && !m_pred_abs.validate_defs(*m_model.get())) {
|
|
TRACE("qe",
|
|
tout << msg << "\n";
|
|
display(tout);
|
|
if (m_level > 0) {
|
|
get_kernel(m_level-1).s().display(tout);
|
|
}
|
|
expr_ref_vector asms(m);
|
|
m_pred_abs.get_assumptions(m_model.get(), asms);
|
|
tout << asms << "\n";
|
|
m_pred_abs.pred2lit(asms);
|
|
tout << asms << "\n";);
|
|
return false;
|
|
}
|
|
else {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool get_core(expr_ref_vector& core, unsigned level) {
|
|
SASSERT(validate_defs("get_core"));
|
|
get_kernel(level).get_core(core);
|
|
m_pred_abs.pred2lit(core);
|
|
return true;
|
|
}
|
|
|
|
bool minimize_core(expr_ref_vector& core, unsigned level) {
|
|
expr_ref_vector core1(m), core2(m), dels(m);
|
|
TRACE("qe", tout << core.size() << "\n";);
|
|
mus mus(get_kernel(level).s());
|
|
for (unsigned i = 0; i < core.size(); ++i) {
|
|
app* a = to_app(core[i].get());
|
|
max_level lvl = m_pred_abs.compute_level(a);
|
|
if (lvl.max() + 2 <= level) {
|
|
VERIFY(core1.size() == mus.add_soft(a));
|
|
core1.push_back(a);
|
|
}
|
|
else {
|
|
core2.push_back(a);
|
|
mus.add_assumption(a);
|
|
}
|
|
}
|
|
TRACE("qe", tout << core1.size() << " " << core2.size() << "\n";);
|
|
if (core1.size() > 8) {
|
|
if (l_true != mus.get_mus(core2)) {
|
|
return false;
|
|
}
|
|
TRACE("qe", tout << core1.size() << " -> " << core2.size() << "\n";);
|
|
core.reset();
|
|
core.append(core2);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void check_cancel() {
|
|
if (m.canceled()) {
|
|
throw tactic_exception(m.limit().get_cancel_msg());
|
|
}
|
|
}
|
|
|
|
void display(std::ostream& out) const {
|
|
out << "level: " << m_level << "\n";
|
|
for (unsigned i = 0; i < m_vars.size(); ++i) {
|
|
out << m_vars[i] << "\n";
|
|
}
|
|
m_pred_abs.display(out);
|
|
}
|
|
|
|
void display(std::ostream& out, model& model) const {
|
|
display(out);
|
|
model_v2_pp(out, model);
|
|
}
|
|
|
|
void display(std::ostream& out, expr_ref_vector const& asms) const {
|
|
m_pred_abs.display(out, asms);
|
|
}
|
|
|
|
void add_assumption(expr* fml) {
|
|
expr_ref eq(m);
|
|
app_ref b = m_pred_abs.fresh_bool("b");
|
|
m_asms.push_back(b);
|
|
eq = m.mk_eq(b, fml);
|
|
m_ex.assert_expr(eq);
|
|
m_fa.assert_expr(eq);
|
|
m_pred_abs.add_pred(b, to_app(fml));
|
|
max_level lvl;
|
|
m_pred_abs.set_expr_level(b, lvl);
|
|
}
|
|
|
|
bool project_qe(expr_ref_vector& core) {
|
|
SASSERT(m_level == 1);
|
|
expr_ref fml(m);
|
|
model& mdl = *m_model.get();
|
|
if (!get_core(core, m_level)) {
|
|
return false;
|
|
}
|
|
SASSERT(validate_core(mdl, core));
|
|
get_vars(m_level);
|
|
SASSERT(validate_assumptions(mdl, core));
|
|
m_mbp(force_elim(), m_avars, mdl, core);
|
|
SASSERT(validate_defs("project_qe"));
|
|
if (m_mode == qsat_maximize) {
|
|
maximize_core(core, mdl);
|
|
}
|
|
else {
|
|
fml = negate_core(core);
|
|
add_assumption(fml);
|
|
m_answer.push_back(fml);
|
|
m_free_vars.append(m_avars);
|
|
}
|
|
pop(1);
|
|
return true;
|
|
}
|
|
|
|
bool project(expr_ref_vector& core) {
|
|
if (!get_core(core, m_level)) return false;
|
|
TRACE("qe", display(tout); display(tout << "core\n", core););
|
|
SASSERT(m_level >= 2);
|
|
expr_ref fml(m);
|
|
expr_ref_vector defs(m), core_save(m);
|
|
max_level level;
|
|
model& mdl = *m_model.get();
|
|
SASSERT(validate_core(mdl, core));
|
|
get_vars(m_level-1);
|
|
SASSERT(validate_project(mdl, core));
|
|
m_mbp(force_elim(), m_avars, mdl, core);
|
|
m_free_vars.append(m_avars);
|
|
fml = negate_core(core);
|
|
unsigned num_scopes = 0;
|
|
|
|
m_pred_abs.abstract_atoms(fml, level, defs);
|
|
m_ex.assert_expr(mk_and(defs));
|
|
m_fa.assert_expr(mk_and(defs));
|
|
if (level.max() == UINT_MAX) {
|
|
num_scopes = 2*(m_level/2);
|
|
}
|
|
else if (m_mode == qsat_qe_rec) {
|
|
num_scopes = 2;
|
|
}
|
|
else {
|
|
if (level.max() + 2 > m_level) return false;
|
|
SASSERT(level.max() + 2 <= m_level);
|
|
num_scopes = m_level - level.max();
|
|
SASSERT(num_scopes >= 2);
|
|
if ((num_scopes % 2) != 0) {
|
|
--num_scopes;
|
|
}
|
|
}
|
|
|
|
pop(num_scopes);
|
|
TRACE("qe", tout << "backtrack: " << num_scopes << " new level: " << m_level << "\nproject:\n" << core << "\n|->\n" << fml << "\n";);
|
|
if (m_level == 0 && m_mode != qsat_sat) {
|
|
add_assumption(fml);
|
|
}
|
|
else {
|
|
fml = m_pred_abs.mk_abstract(fml);
|
|
get_kernel(m_level).assert_expr(fml);
|
|
}
|
|
SASSERT(!m_model.get());
|
|
return true;
|
|
}
|
|
|
|
void get_vars(unsigned level) {
|
|
m_avars.reset();
|
|
for (unsigned i = level; i < m_vars.size(); ++i) {
|
|
m_avars.append(m_vars[i]);
|
|
}
|
|
}
|
|
|
|
expr_ref negate_core(expr_ref_vector const& core) {
|
|
return ::push_not(::mk_and(core));
|
|
}
|
|
|
|
bool force_elim() const {
|
|
return m_mode != qsat_qe_rec;
|
|
}
|
|
|
|
expr_ref elim_rec(expr* fml) {
|
|
expr_ref tmp(m);
|
|
expr_ref_vector trail(m);
|
|
obj_map<expr,expr*> visited;
|
|
ptr_vector<expr> todo;
|
|
trail.push_back(fml);
|
|
todo.push_back(fml);
|
|
expr* e = nullptr, *r = nullptr;
|
|
|
|
while (!todo.empty()) {
|
|
check_cancel();
|
|
|
|
e = todo.back();
|
|
if (visited.contains(e)) {
|
|
todo.pop_back();
|
|
continue;
|
|
}
|
|
|
|
switch(e->get_kind()) {
|
|
case AST_APP: {
|
|
app* a = to_app(e);
|
|
expr_ref_vector args(m);
|
|
unsigned num_args = a->get_num_args();
|
|
bool all_visited = true;
|
|
for (unsigned i = 0; i < num_args; ++i) {
|
|
if (visited.find(a->get_arg(i), r)) {
|
|
args.push_back(r);
|
|
}
|
|
else {
|
|
todo.push_back(a->get_arg(i));
|
|
all_visited = false;
|
|
}
|
|
}
|
|
if (all_visited) {
|
|
r = m.mk_app(a->get_decl(), args.size(), args.c_ptr());
|
|
todo.pop_back();
|
|
trail.push_back(r);
|
|
visited.insert(e, r);
|
|
}
|
|
break;
|
|
}
|
|
case AST_QUANTIFIER: {
|
|
app_ref_vector vars(m);
|
|
quantifier* q = to_quantifier(e);
|
|
bool is_fa = q->is_forall();
|
|
tmp = q->get_expr();
|
|
extract_vars(q, tmp, vars);
|
|
TRACE("qe", tout << vars << " " << mk_pp(q, m) << " " << tmp << "\n";);
|
|
tmp = elim_rec(tmp);
|
|
if (is_fa) {
|
|
tmp = ::push_not(tmp);
|
|
}
|
|
tmp = elim(vars, tmp);
|
|
if (is_fa) {
|
|
tmp = ::push_not(tmp);
|
|
}
|
|
trail.push_back(tmp);
|
|
visited.insert(e, tmp);
|
|
todo.pop_back();
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
}
|
|
VERIFY (visited.find(fml, e));
|
|
return expr_ref(e, m);
|
|
}
|
|
|
|
expr_ref elim(app_ref_vector const& vars, expr* _fml) {
|
|
expr_ref fml(_fml, m);
|
|
reset();
|
|
m_vars.push_back(app_ref_vector(m));
|
|
m_vars.push_back(vars);
|
|
initialize_levels();
|
|
fml = push_not(fml);
|
|
|
|
TRACE("qe", tout << vars << " " << fml << "\n";);
|
|
expr_ref_vector defs(m);
|
|
m_pred_abs.abstract_atoms(fml, defs);
|
|
fml = m_pred_abs.mk_abstract(fml);
|
|
m_ex.assert_expr(mk_and(defs));
|
|
m_fa.assert_expr(mk_and(defs));
|
|
m_ex.assert_expr(fml);
|
|
m_fa.assert_expr(m.mk_not(fml));
|
|
TRACE("qe", tout << "ex: " << fml << "\n";);
|
|
lbool is_sat = check_sat();
|
|
fml = ::mk_and(m_answer);
|
|
TRACE("qe", tout << "ans: " << fml << "\n";
|
|
tout << "Free vars: " << m_free_vars << "\n";);
|
|
if (is_sat == l_false) {
|
|
obj_hashtable<app> vars;
|
|
for (unsigned i = 0; i < m_free_vars.size(); ++i) {
|
|
app* v = m_free_vars[i].get();
|
|
if (vars.contains(v)) {
|
|
m_free_vars[i] = m_free_vars.back();
|
|
m_free_vars.pop_back();
|
|
--i;
|
|
}
|
|
else {
|
|
vars.insert(v);
|
|
}
|
|
}
|
|
fml = mk_exists(m, m_free_vars.size(), m_free_vars.c_ptr(), fml);
|
|
return fml;
|
|
}
|
|
else {
|
|
return expr_ref(_fml, m);
|
|
}
|
|
}
|
|
|
|
bool validate_assumptions(model& mdl, expr_ref_vector const& core) {
|
|
for (expr* c : core) {
|
|
if (!mdl.is_true(c)) {
|
|
TRACE("qe", tout << "component of core is not true: " << mk_pp(c, m) << "\n";);
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool validate_core(model& mdl, expr_ref_vector const& core) {
|
|
return true;
|
|
#if 0
|
|
TRACE("qe", tout << "Validate core\n";);
|
|
solver& s = get_kernel(m_level).s();
|
|
expr_ref_vector fmls(m);
|
|
fmls.append(core.size(), core.c_ptr());
|
|
s.get_assertions(fmls);
|
|
return check_fmls(fmls) || m.canceled();
|
|
#endif
|
|
}
|
|
|
|
bool check_fmls(expr_ref_vector const& fmls) {
|
|
smt_params p;
|
|
smt::kernel solver(m, p);
|
|
for (unsigned i = 0; i < fmls.size(); ++i) {
|
|
solver.assert_expr(fmls[i]);
|
|
}
|
|
lbool is_sat = solver.check();
|
|
CTRACE("qe", is_sat != l_false,
|
|
tout << fmls << "\nare not unsat\n";);
|
|
return (is_sat == l_false) || m.canceled();
|
|
}
|
|
|
|
bool validate_model(expr_ref_vector const& asms) {
|
|
return true;
|
|
#if 0
|
|
TRACE("qe", tout << "Validate model\n";);
|
|
solver& s = get_kernel(m_level).s();
|
|
expr_ref_vector fmls(m);
|
|
s.get_assertions(fmls);
|
|
return
|
|
validate_model(*m_model, asms.size(), asms.c_ptr()) &&
|
|
validate_model(*m_model, fmls.size(), fmls.c_ptr());
|
|
#endif
|
|
}
|
|
|
|
bool validate_model(model& mdl, unsigned sz, expr* const* fmls) {
|
|
expr_ref val(m);
|
|
for (unsigned i = 0; i < sz; ++i) {
|
|
if (!m_model->is_true(fmls[i]) && !m.canceled()) {
|
|
TRACE("qe", tout << "Formula does not evaluate to true in model: " << mk_pp(fmls[i], m) << "\n";);
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// validate the following:
|
|
// proj is true in model.
|
|
// core is true in model.
|
|
// proj does not contain vars.
|
|
// proj => exists vars . core
|
|
// (core[model(vars)/vars] => proj)
|
|
|
|
bool validate_project(model& mdl, expr_ref_vector const& core) {
|
|
return true;
|
|
#if 0
|
|
TRACE("qe", tout << "Validate projection\n";);
|
|
if (!validate_model(mdl, core.size(), core.c_ptr())) return false;
|
|
|
|
expr_ref_vector proj(core);
|
|
app_ref_vector vars(m_avars);
|
|
m_mbp(false, vars, mdl, proj);
|
|
if (!vars.empty()) {
|
|
TRACE("qe", tout << "Not validating partial projection\n";);
|
|
return true;
|
|
}
|
|
if (!validate_model(mdl, proj.size(), proj.c_ptr())) {
|
|
TRACE("qe", tout << "Projection is false in model\n";);
|
|
return false;
|
|
}
|
|
if (m.canceled()) {
|
|
return true;
|
|
}
|
|
for (unsigned i = 0; i < m_avars.size(); ++i) {
|
|
contains_app cont(m, m_avars[i].get());
|
|
if (cont(proj)) {
|
|
TRACE("qe", tout << "Projection contains free variable: " << mk_pp(m_avars[i].get(), m) << "\n";);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
//
|
|
// TBD: proj => exists vars . core,
|
|
// e.g., extract and use realizer functions from mbp.
|
|
//
|
|
|
|
// (core[model(vars)/vars] => proj)
|
|
expr_ref_vector fmls(m);
|
|
fmls.append(core.size(), core.c_ptr());
|
|
for (unsigned i = 0; i < m_avars.size(); ++i) {
|
|
expr_ref val(m);
|
|
VERIFY(mdl.eval(m_avars[i].get(), val));
|
|
fmls.push_back(m.mk_eq(m_avars[i].get(), val));
|
|
}
|
|
fmls.push_back(m.mk_not(mk_and(proj)));
|
|
if (!check_fmls(fmls)) {
|
|
TRACE("qe", tout << "implication check failed, could be due to turning != into >\n";);
|
|
}
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
|
|
public:
|
|
|
|
qsat(ast_manager& m, params_ref const& p, qsat_mode mode):
|
|
m(m),
|
|
m_mbp(m),
|
|
m_fa(m),
|
|
m_ex(m),
|
|
m_pred_abs(m),
|
|
m_answer(m),
|
|
m_asms(m),
|
|
m_level(0),
|
|
m_mode(mode),
|
|
m_avars(m),
|
|
m_free_vars(m),
|
|
m_objective(nullptr),
|
|
m_value(nullptr),
|
|
m_was_sat(false),
|
|
m_gt(m)
|
|
{
|
|
reset();
|
|
}
|
|
|
|
~qsat() override {
|
|
reset();
|
|
}
|
|
|
|
void updt_params(params_ref const & p) override {
|
|
}
|
|
|
|
void collect_param_descrs(param_descrs & r) override {
|
|
}
|
|
|
|
|
|
void operator()(/* in */ goal_ref const & in,
|
|
/* out */ goal_ref_buffer & result) override {
|
|
tactic_report report("qsat-tactic", *in);
|
|
ptr_vector<expr> fmls;
|
|
expr_ref_vector defs(m);
|
|
expr_ref fml(m);
|
|
in->get_formulas(fmls);
|
|
fml = mk_and(m, fmls.size(), fmls.c_ptr());
|
|
|
|
// for now:
|
|
// fail if cores. (TBD)
|
|
// fail if proofs. (TBD)
|
|
|
|
if (m_mode == qsat_qe_rec) {
|
|
fml = elim_rec(fml);
|
|
in->reset();
|
|
in->inc_depth();
|
|
in->assert_expr(fml);
|
|
result.push_back(in.get());
|
|
return;
|
|
}
|
|
|
|
reset();
|
|
TRACE("qe", tout << fml << "\n";);
|
|
if (m_mode != qsat_sat) {
|
|
fml = push_not(fml);
|
|
}
|
|
hoist(fml);
|
|
m_pred_abs.abstract_atoms(fml, defs);
|
|
fml = m_pred_abs.mk_abstract(fml);
|
|
m_ex.assert_expr(mk_and(defs));
|
|
m_fa.assert_expr(mk_and(defs));
|
|
m_ex.assert_expr(fml);
|
|
m_fa.assert_expr(m.mk_not(fml));
|
|
TRACE("qe", tout << "ex: " << fml << "\n";);
|
|
lbool is_sat = check_sat();
|
|
|
|
switch (is_sat) {
|
|
case l_false:
|
|
in->reset();
|
|
in->inc_depth();
|
|
if (m_mode == qsat_qe) {
|
|
fml = ::mk_and(m_answer);
|
|
in->assert_expr(fml);
|
|
}
|
|
else {
|
|
SASSERT(m_mode == qsat_sat);
|
|
in->assert_expr(m.mk_false());
|
|
}
|
|
result.push_back(in.get());
|
|
break;
|
|
case l_true:
|
|
in->reset();
|
|
in->inc_depth();
|
|
result.push_back(in.get());
|
|
if (in->models_enabled()) {
|
|
model_converter_ref mc;
|
|
mc = model2model_converter(m_model.get());
|
|
mc = concat(m_pred_abs.fmc(), mc.get());
|
|
in->add(mc.get());
|
|
}
|
|
break;
|
|
case l_undef:
|
|
result.push_back(in.get());
|
|
std::string s = m_ex.s().reason_unknown();
|
|
if (s == "ok" || s == "unknown") {
|
|
s = m_fa.s().reason_unknown();
|
|
}
|
|
throw tactic_exception(s.c_str());
|
|
}
|
|
}
|
|
|
|
void collect_statistics(statistics & st) const override {
|
|
st.copy(m_st);
|
|
m_fa.s().collect_statistics(st);
|
|
m_ex.s().collect_statistics(st);
|
|
m_pred_abs.collect_statistics(st);
|
|
st.update("qsat num rounds", m_stats.m_num_rounds);
|
|
m_pred_abs.collect_statistics(st);
|
|
}
|
|
|
|
void reset_statistics() override {
|
|
m_stats.reset();
|
|
m_fa.reset();
|
|
m_ex.reset();
|
|
}
|
|
|
|
void cleanup() override {
|
|
reset();
|
|
}
|
|
|
|
void set_logic(symbol const & l) override {
|
|
}
|
|
|
|
void set_progress_callback(progress_callback * callback) override {
|
|
}
|
|
|
|
tactic * translate(ast_manager & m) override {
|
|
return alloc(qsat, m, m_params, m_mode);
|
|
}
|
|
|
|
lbool maximize(expr_ref_vector const& fmls, app* t, model_ref& mdl, opt::inf_eps& value) {
|
|
expr_ref_vector defs(m);
|
|
expr_ref fml = mk_and(fmls);
|
|
hoist(fml);
|
|
m_objective = t;
|
|
m_value = &value;
|
|
m_was_sat = false;
|
|
m_model_save.reset();
|
|
m_pred_abs.abstract_atoms(fml, defs);
|
|
fml = m_pred_abs.mk_abstract(fml);
|
|
m_ex.assert_expr(mk_and(defs));
|
|
m_fa.assert_expr(mk_and(defs));
|
|
m_ex.assert_expr(fml);
|
|
m_fa.assert_expr(m.mk_not(fml));
|
|
lbool is_sat = check_sat();
|
|
mdl = m_model.get();
|
|
switch (is_sat) {
|
|
case l_false:
|
|
if (!m_was_sat) {
|
|
return l_false;
|
|
}
|
|
mdl = m_model_save;
|
|
break;
|
|
case l_true:
|
|
UNREACHABLE();
|
|
break;
|
|
case l_undef:
|
|
std::string s = m_ex.s().reason_unknown();
|
|
if (s == "ok") {
|
|
s = m_fa.s().reason_unknown();
|
|
}
|
|
|
|
throw tactic_exception(s.c_str());
|
|
}
|
|
return l_true;
|
|
}
|
|
|
|
void maximize_core(expr_ref_vector const& core, model& mdl) {
|
|
SASSERT(m_value);
|
|
SASSERT(m_objective);
|
|
TRACE("qe", tout << "maximize: " << core << "\n";);
|
|
m_was_sat |= !core.empty();
|
|
expr_ref bound(m);
|
|
*m_value = m_value_save;
|
|
IF_VERBOSE(3, verbose_stream() << "(maximize " << *m_value << ")\n";);
|
|
m_ex.assert_expr(m_gt);
|
|
m_fa.assert_expr(m_gt);
|
|
}
|
|
|
|
void maximize_model() {
|
|
SASSERT(m_level == 1 && m_mode == qsat_maximize);
|
|
SASSERT(m_objective);
|
|
expr_ref ge(m);
|
|
expr_ref_vector asms(m), defs(m);
|
|
m_pred_abs.get_assumptions(m_model.get(), asms);
|
|
m_pred_abs.pred2lit(asms);
|
|
|
|
SASSERT(validate_defs("maximize_model1"));
|
|
|
|
m_value_save = m_mbp.maximize(asms, *m_model.get(), m_objective, ge, m_gt);
|
|
|
|
SASSERT(validate_defs("maximize_model2"));
|
|
|
|
// bound := val <= m_objective
|
|
|
|
IF_VERBOSE(3, verbose_stream() << "(qsat-maximize-bound: " << m_value_save << ")\n";);
|
|
|
|
max_level level;
|
|
m_pred_abs.abstract_atoms(ge, level, defs);
|
|
m_ex.assert_expr(mk_and(defs));
|
|
m_fa.assert_expr(mk_and(defs));
|
|
|
|
ge = m_pred_abs.mk_abstract(ge);
|
|
|
|
SASSERT(is_uninterp_const(ge));
|
|
// update model with evaluation for bound.
|
|
if (is_uninterp_const(ge)) {
|
|
m_model->register_decl(to_app(ge)->get_decl(), m.mk_true());
|
|
}
|
|
SASSERT(validate_defs("maximize_model3"));
|
|
}
|
|
|
|
};
|
|
|
|
lbool maximize(expr_ref_vector const& fmls, app* t, opt::inf_eps& value, model_ref& mdl, params_ref const& p) {
|
|
ast_manager& m = fmls.get_manager();
|
|
qsat qs(m, p, qsat_maximize);
|
|
return qs.maximize(fmls, t, mdl, value);
|
|
}
|
|
|
|
|
|
struct qmax::imp {
|
|
qsat m_qsat;
|
|
imp(ast_manager& m, params_ref const& p):
|
|
m_qsat(m, p, qsat_maximize)
|
|
{}
|
|
};
|
|
|
|
qmax::qmax(ast_manager& m, params_ref const& p) {
|
|
m_imp = alloc(imp, m, p);
|
|
}
|
|
|
|
qmax::~qmax() {
|
|
dealloc(m_imp);
|
|
}
|
|
|
|
lbool qmax::operator()(expr_ref_vector const& fmls, app* t, opt::inf_eps& value, model_ref& mdl) {
|
|
return m_imp->m_qsat.maximize(fmls, t, mdl, value);
|
|
}
|
|
|
|
void qmax::collect_statistics(statistics& st) const {
|
|
m_imp->m_qsat.collect_statistics(st);
|
|
}
|
|
};
|
|
|
|
tactic * mk_qsat_tactic(ast_manager& m, params_ref const& p) {
|
|
return alloc(qe::qsat, m, p, qe::qsat_sat);
|
|
}
|
|
|
|
tactic * mk_qe2_tactic(ast_manager& m, params_ref const& p) {
|
|
return alloc(qe::qsat, m, p, qe::qsat_qe);
|
|
}
|
|
|
|
tactic * mk_qe_rec_tactic(ast_manager& m, params_ref const& p) {
|
|
return alloc(qe::qsat, m, p, qe::qsat_qe_rec);
|
|
}
|
|
|
|
|
|
|
|
|