3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 01:24:08 +00:00
z3/src/opt/sortmax.cpp
Nikolaj Bjorner 335d672bf1 fix #1675, regression in core processing in maxres
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2018-06-19 23:23:19 -07:00

159 lines
5.1 KiB
C++

/*++
Copyright (c) 2014 Microsoft Corporation
Module Name:
sortmax.cpp
Abstract:
Theory based MaxSAT.
Author:
Nikolaj Bjorner (nbjorner) 2016-11-18
Notes:
--*/
#include "opt/maxsmt.h"
#include "util/uint_set.h"
#include "ast/ast_pp.h"
#include "model/model_smt2_pp.h"
#include "smt/smt_theory.h"
#include "smt/smt_context.h"
#include "opt/opt_context.h"
#include "util/sorting_network.h"
#include "tactic/generic_model_converter.h"
namespace opt {
class sortmax : public maxsmt_solver_base {
public:
typedef expr* pliteral;
typedef ptr_vector<expr> pliteral_vector;
psort_nw<sortmax> m_sort;
expr_ref_vector m_trail;
func_decl_ref_vector m_fresh;
ref<generic_model_converter> m_filter;
sortmax(maxsat_context& c, weights_t& ws, expr_ref_vector const& soft):
maxsmt_solver_base(c, ws, soft), m_sort(*this), m_trail(m), m_fresh(m) {}
virtual ~sortmax() {}
lbool operator()() {
obj_map<expr, rational> soft;
if (!init()) {
return l_false;
}
lbool is_sat = find_mutexes(soft);
if (is_sat != l_true) {
return is_sat;
}
m_filter = alloc(generic_model_converter, m, "sortmax");
rational offset = m_lower;
m_upper = offset;
expr_ref_vector in(m);
expr_ref tmp(m);
ptr_vector<expr> out;
obj_map<expr, rational>::iterator it = soft.begin(), end = soft.end();
for (; it != end; ++it) {
if (!it->m_value.is_unsigned()) {
throw default_exception("sortmax can only handle unsigned weights. Use a different heuristic.");
}
unsigned n = it->m_value.get_unsigned();
while (n > 0) {
in.push_back(it->m_key);
--n;
}
}
m_sort.sorting(in.size(), in.c_ptr(), out);
// initialize sorting network outputs using the initial assignment.
unsigned first = 0;
it = soft.begin();
for (; it != end; ++it) {
if (m_model->is_true(it->m_key)) {
unsigned n = it->m_value.get_unsigned();
while (n > 0) {
s().assert_expr(out[first]);
++first;
--n;
}
}
else {
m_upper += it->m_value;
}
}
while (l_true == is_sat && first < out.size() && m_lower < m_upper) {
trace_bounds("sortmax");
s().assert_expr(out[first]);
is_sat = s().check_sat(0, nullptr);
TRACE("opt", tout << is_sat << "\n"; s().display(tout); tout << "\n";);
if (m.canceled()) {
is_sat = l_undef;
}
if (is_sat == l_true) {
++first;
s().get_model(m_model);
update_assignment();
for (; first < out.size() && is_true(out[first]); ++first) {
s().assert_expr(out[first]);
}
TRACE("opt", model_smt2_pp(tout, m, *m_model.get(), 0););
m_upper = m_lower + rational(out.size() - first);
(*m_filter)(m_model);
}
}
if (is_sat == l_false) {
is_sat = l_true;
m_lower = m_upper;
}
TRACE("opt", tout << "min cost: " << m_upper << "\n";);
return is_sat;
}
void update_assignment() {
for (unsigned i = 0; i < m_soft.size(); ++i) {
m_assignment[i] = is_true(m_soft[i]);
}
}
bool is_true(expr* e) {
return m_model->is_true(e);
}
// definitions used for sorting network
pliteral mk_false() { return m.mk_false(); }
pliteral mk_true() { return m.mk_true(); }
pliteral mk_max(pliteral a, pliteral b) { return trail(m.mk_or(a, b)); }
pliteral mk_min(pliteral a, pliteral b) { return trail(m.mk_and(a, b)); }
pliteral mk_not(pliteral a) { if (m.is_not(a,a)) return a; return trail(m.mk_not(a)); }
std::ostream& pp(std::ostream& out, pliteral lit) { return out << mk_pp(lit, m); }
pliteral trail(pliteral l) {
m_trail.push_back(l);
return l;
}
pliteral fresh(char const* n) {
expr_ref fr(m.mk_fresh_const(n, m.mk_bool_sort()), m);
func_decl* f = to_app(fr)->get_decl();
m_fresh.push_back(f);
m_filter->hide(f);
return trail(fr);
}
void mk_clause(unsigned n, pliteral const* lits) {
s().assert_expr(mk_or(m, n, lits));
}
};
maxsmt_solver_base* mk_sortmax(maxsat_context& c, weights_t& ws, expr_ref_vector const& soft) {
return alloc(sortmax, c, ws, soft);
}
}