3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 01:24:08 +00:00
z3/src/opt/maxsmt.cpp
Nikolaj Bjorner 335d672bf1 fix #1675, regression in core processing in maxres
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2018-06-19 23:23:19 -07:00

464 lines
14 KiB
C++

/*++
Copyright (c) 2013 Microsoft Corporation
Module Name:
maxsmt.cpp
Abstract:
MaxSMT optimization context.
Author:
Nikolaj Bjorner (nbjorner) 2013-11-7
Notes:
--*/
#include <typeinfo>
#include "opt/maxsmt.h"
#include "opt/maxres.h"
#include "opt/wmax.h"
#include "opt/opt_params.hpp"
#include "ast/ast_pp.h"
#include "util/uint_set.h"
#include "opt/opt_context.h"
#include "smt/theory_wmaxsat.h"
#include "smt/theory_pb.h"
#include "ast/ast_util.h"
#include "ast/pb_decl_plugin.h"
namespace opt {
maxsmt_solver_base::maxsmt_solver_base(
maxsat_context& c, vector<rational> const& ws, expr_ref_vector const& soft):
m(c.get_manager()),
m_c(c),
m_soft(soft),
m_weights(ws),
m_assertions(m),
m_trail(m) {
c.get_base_model(m_model);
SASSERT(m_model);
updt_params(c.params());
}
void maxsmt_solver_base::updt_params(params_ref& p) {
m_params.copy(p);
}
solver& maxsmt_solver_base::s() {
return m_c.get_solver();
}
void maxsmt_solver_base::commit_assignment() {
expr_ref tmp(m);
rational k(0), cost(0);
for (unsigned i = 0; i < m_soft.size(); ++i) {
if (get_assignment(i)) {
k += m_weights[i];
}
else {
cost += m_weights[i];
}
}
pb_util pb(m);
tmp = pb.mk_ge(m_weights.size(), m_weights.c_ptr(), m_soft.c_ptr(), k);
TRACE("opt", tout << "cost: " << cost << "\n" << tmp << "\n";);
s().assert_expr(tmp);
}
bool maxsmt_solver_base::init() {
m_lower.reset();
m_upper.reset();
m_assignment.reset();
for (unsigned i = 0; i < m_weights.size(); ++i) {
m_assignment.push_back(m.is_true(m_soft[i]));
if (!m_assignment.back()) {
m_upper += m_weights[i];
}
}
TRACE("opt",
tout << "upper: " << m_upper << " assignments: ";
for (unsigned i = 0; i < m_weights.size(); ++i) {
tout << (m_assignment[i]?"T":"F");
}
tout << "\n";);
return true;
}
void maxsmt_solver_base::set_mus(bool f) {
params_ref p;
p.set_bool("minimize_core", f);
// p.set_bool("minimize_core_partial", f);
s().updt_params(p);
}
void maxsmt_solver_base::enable_sls(bool force) {
m_c.enable_sls(force);
}
app* maxsmt_solver_base::mk_fresh_bool(char const* name) {
app* result = m.mk_fresh_const(name, m.mk_bool_sort());
m_c.fm().hide(result);
return result;
}
smt::theory_wmaxsat* maxsmt_solver_base::get_wmax_theory() const {
smt::theory_id th_id = m.get_family_id("weighted_maxsat");
smt::theory* th = m_c.smt_context().get_theory(th_id);
if (th) {
return dynamic_cast<smt::theory_wmaxsat*>(th);
}
else {
return nullptr;
}
}
smt::theory_wmaxsat* maxsmt_solver_base::ensure_wmax_theory() {
smt::theory_wmaxsat* wth = get_wmax_theory();
if (wth) {
wth->reset_local();
}
else {
wth = alloc(smt::theory_wmaxsat, m, m_c.fm());
m_c.smt_context().register_plugin(wth);
}
smt::theory_id th_pb = m.get_family_id("pb");
smt::theory_pb* pb = dynamic_cast<smt::theory_pb*>(m_c.smt_context().get_theory(th_pb));
if (!pb) {
theory_pb_params params;
pb = alloc(smt::theory_pb, m, params);
m_c.smt_context().register_plugin(pb);
}
return wth;
}
maxsmt_solver_base::scoped_ensure_theory::scoped_ensure_theory(maxsmt_solver_base& s) {
m_wth = s.ensure_wmax_theory();
}
maxsmt_solver_base::scoped_ensure_theory::~scoped_ensure_theory() {
if (m_wth) {
m_wth->reset_local();
}
}
smt::theory_wmaxsat& maxsmt_solver_base::scoped_ensure_theory::operator()() { return *m_wth; }
void maxsmt_solver_base::trace_bounds(char const * solver) {
IF_VERBOSE(1,
rational l = m_adjust_value(m_lower);
rational u = m_adjust_value(m_upper);
if (l > u) std::swap(l, u);
verbose_stream() << "(opt." << solver << " [" << l << ":" << u << "])\n";);
}
lbool maxsmt_solver_base::find_mutexes(obj_map<expr, rational>& new_soft) {
m_lower.reset();
for (unsigned i = 0; i < m_soft.size(); ++i) {
new_soft.insert(m_soft[i], m_weights[i]);
}
vector<expr_ref_vector> mutexes;
lbool is_sat = s().find_mutexes(m_soft, mutexes);
if (is_sat != l_true) {
return is_sat;
}
for (unsigned i = 0; i < mutexes.size(); ++i) {
process_mutex(mutexes[i], new_soft);
}
return l_true;
}
struct maxsmt_compare_soft {
obj_map<expr, rational> const& m_soft;
maxsmt_compare_soft(obj_map<expr, rational> const& soft): m_soft(soft) {}
bool operator()(expr* a, expr* b) const {
return m_soft.find(a) > m_soft.find(b);
}
};
void maxsmt_solver_base::process_mutex(expr_ref_vector& mutex, obj_map<expr, rational>& new_soft) {
TRACE("opt",
for (unsigned i = 0; i < mutex.size(); ++i) {
tout << mk_pp(mutex[i].get(), m) << " |-> " << new_soft.find(mutex[i].get()) << "\n";
});
if (mutex.size() <= 1) {
return;
}
maxsmt_compare_soft cmp(new_soft);
ptr_vector<expr> _mutex(mutex.size(), mutex.c_ptr());
std::sort(_mutex.begin(), _mutex.end(), cmp);
mutex.reset();
mutex.append(_mutex.size(), _mutex.c_ptr());
rational weight(0), sum1(0), sum2(0);
vector<rational> weights;
for (unsigned i = 0; i < mutex.size(); ++i) {
rational w = new_soft.find(mutex[i].get());
weights.push_back(w);
sum1 += w;
new_soft.remove(mutex[i].get());
}
for (unsigned i = mutex.size(); i > 0; ) {
--i;
expr_ref soft(m.mk_or(i+1, mutex.c_ptr()), m);
m_trail.push_back(soft);
rational w = weights[i];
weight = w - weight;
m_lower += weight*rational(i);
IF_VERBOSE(1, verbose_stream() << "(opt.maxsat mutex size: " << i + 1 << " weight: " << weight << ")\n";);
sum2 += weight*rational(i+1);
new_soft.insert(soft, weight);
for (; i > 0 && weights[i-1] == w; --i) {}
weight = w;
}
SASSERT(sum1 == sum2);
}
maxsmt::maxsmt(maxsat_context& c, unsigned index):
m(c.get_manager()), m_c(c), m_index(index),
m_soft_constraints(m), m_answer(m) {}
lbool maxsmt::operator()() {
lbool is_sat = l_undef;
m_msolver = nullptr;
symbol const& maxsat_engine = m_c.maxsat_engine();
IF_VERBOSE(1, verbose_stream() << "(maxsmt)\n";);
TRACE("opt_verbose", s().display(tout << "maxsmt\n") << "\n";);
if (m_soft_constraints.empty() || maxsat_engine == symbol("maxres") || maxsat_engine == symbol::null) {
m_msolver = mk_maxres(m_c, m_index, m_weights, m_soft_constraints);
}
else if (maxsat_engine == symbol("pd-maxres")) {
m_msolver = mk_primal_dual_maxres(m_c, m_index, m_weights, m_soft_constraints);
}
else if (maxsat_engine == symbol("wmax")) {
m_msolver = mk_wmax(m_c, m_weights, m_soft_constraints);
}
else if (maxsat_engine == symbol("sortmax")) {
m_msolver = mk_sortmax(m_c, m_weights, m_soft_constraints);
}
else {
warning_msg("solver %s is not recognized, using default 'maxres'", maxsat_engine.str().c_str());
m_msolver = mk_maxres(m_c, m_index, m_weights, m_soft_constraints);
}
if (m_msolver) {
m_msolver->updt_params(m_params);
m_msolver->set_adjust_value(m_adjust_value);
is_sat = l_undef;
try {
is_sat = (*m_msolver)();
}
catch (z3_exception&) {
is_sat = l_undef;
}
if (is_sat != l_false) {
m_msolver->get_model(m_model, m_labels);
}
}
IF_VERBOSE(5, verbose_stream() << "is-sat: " << is_sat << "\n";
if (is_sat == l_true) {
verbose_stream() << "Satisfying soft constraints\n";
display_answer(verbose_stream());
});
DEBUG_CODE(if (is_sat == l_true) verify_assignment(););
return is_sat;
}
void maxsmt::set_adjust_value(adjust_value& adj) {
m_adjust_value = adj;
if (m_msolver) {
m_msolver->set_adjust_value(m_adjust_value);
}
}
void maxsmt::verify_assignment() {
// TBD: have to use a different solver
// because we don't push local scope any longer.
return;
}
bool maxsmt::get_assignment(unsigned idx) const {
if (m_msolver) {
return m_msolver->get_assignment(idx);
}
else {
return true;
}
}
rational maxsmt::get_lower() const {
rational r = m_lower;
if (m_msolver) {
rational q = m_msolver->get_lower();
if (q > r) r = q;
}
return m_adjust_value(r);
}
rational maxsmt::get_upper() const {
rational r = m_upper;
if (m_msolver) {
rational q = m_msolver->get_upper();
if (q < r) r = q;
}
return m_adjust_value(r);
}
void maxsmt::update_lower(rational const& r) {
m_lower = r;
}
void maxsmt::update_upper(rational const& r) {
m_upper = r;
}
void maxsmt::get_model(model_ref& mdl, svector<symbol>& labels) {
mdl = m_model.get();
labels = m_labels;
}
void maxsmt::commit_assignment() {
if (m_msolver) {
m_msolver->commit_assignment();
}
}
void maxsmt::add(expr* f, rational const& w) {
TRACE("opt", tout << mk_pp(f, m) << " weight: " << w << "\n";);
SASSERT(m.is_bool(f));
SASSERT(w.is_pos());
unsigned index = 0;
if (m_soft_constraint_index.find(f, index)) {
m_weights[index] += w;
}
else {
m_soft_constraint_index.insert(f, m_weights.size());
m_soft_constraints.push_back(f);
m_weights.push_back(w);
}
m_upper += w;
}
struct cmp_first {
bool operator()(std::pair<unsigned, rational> const& x, std::pair<unsigned, rational> const& y) const {
return x.first < y.first;
}
};
void maxsmt::display_answer(std::ostream& out) const {
vector<std::pair<unsigned, rational>> sorted_weights;
unsigned n = m_weights.size();
for (unsigned i = 0; i < n; ++i) {
sorted_weights.push_back(std::make_pair(i, m_weights[i]));
}
std::sort(sorted_weights.begin(), sorted_weights.end(), cmp_first());
sorted_weights.reverse();
for (unsigned i = 0; i < n; ++i) {
unsigned idx = sorted_weights[i].first;
expr* e = m_soft_constraints[idx];
bool is_not = m.is_not(e, e);
out << m_weights[idx] << ": " << mk_pp(e, m)
<< ((is_not != get_assignment(idx))?" |-> true ":" |-> false ")
<< "\n";
}
}
bool maxsmt::is_maxsat_problem(vector<rational> const& ws) const {
for (unsigned i = 0; i < ws.size(); ++i) {
if (!ws[i].is_one()) {
return false;
}
}
return true;
}
void maxsmt::updt_params(params_ref& p) {
m_params.append(p);
if (m_msolver) {
m_msolver->updt_params(p);
}
}
void maxsmt::collect_statistics(statistics& st) const {
if (m_msolver) {
m_msolver->collect_statistics(st);
}
}
solver& maxsmt::s() {
return m_c.get_solver();
}
void maxsmt::model_updated(model* mdl) {
m_c.model_updated(mdl);
}
class solver_maxsat_context : public maxsat_context {
params_ref m_params;
solver_ref m_solver;
model_ref m_model;
ref<generic_model_converter> m_fm;
symbol m_maxsat_engine;
public:
solver_maxsat_context(params_ref& p, solver* s, model * m):
m_params(p),
m_solver(s),
m_model(m),
m_fm(alloc(generic_model_converter, s->get_manager(), "maxsmt")) {
opt_params _p(p);
m_maxsat_engine = _p.maxsat_engine();
}
generic_model_converter& fm() override { return *m_fm.get(); }
bool sat_enabled() const override { return false; }
solver& get_solver() override { return *m_solver.get(); }
ast_manager& get_manager() const override { return m_solver->get_manager(); }
params_ref& params() override { return m_params; }
void enable_sls(bool force) override { } // no op
symbol const& maxsat_engine() const override { return m_maxsat_engine; }
void get_base_model(model_ref& _m) override { _m = m_model; };
smt::context& smt_context() override {
throw default_exception("stand-alone maxsat context does not support wmax");
}
unsigned num_objectives() override { return 1; }
bool verify_model(unsigned id, model* mdl, rational const& v) override { return true; };
void set_model(model_ref& _m) override { m_model = _m; }
void model_updated(model* mdl) override { } // no-op
};
lbool maxsmt_wrapper::operator()(vector<std::pair<expr*,rational>>& soft) {
solver_maxsat_context ctx(m_params, m_solver.get(), m_model.get());
maxsmt maxsmt(ctx, 0);
for (auto const& p : soft) {
maxsmt.add(p.first, p.second);
}
lbool r = maxsmt();
if (r == l_true) {
ast_manager& m = m_solver->get_manager();
svector<symbol> labels;
maxsmt.get_model(m_model, labels);
// TBD: is m_fm applied or not?
unsigned j = 0;
for (auto const& p : soft) {
if (m_model->is_true(p.first)) {
soft[j++] = p;
}
}
soft.shrink(j);
}
return r;
}
};