mirror of
				https://github.com/Z3Prover/z3
				synced 2025-11-04 05:19:11 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			2188 lines
		
	
	
	
		
			84 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2188 lines
		
	
	
	
		
			84 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*++
 | 
						|
Copyright (c) 2012 Microsoft Corporation
 | 
						|
 | 
						|
Module Name:
 | 
						|
 | 
						|
    nlsat_explain.cpp
 | 
						|
 | 
						|
Abstract:
 | 
						|
 | 
						|
    Functor that implements the "explain" procedure defined in Dejan and Leo's paper.
 | 
						|
 | 
						|
Author:
 | 
						|
 | 
						|
    Leonardo de Moura (leonardo) 2012-01-13.
 | 
						|
 | 
						|
Revision History:
 | 
						|
 | 
						|
--*/
 | 
						|
#include "nlsat/nlsat_explain.h"
 | 
						|
#include "nlsat/nlsat_assignment.h"
 | 
						|
#include "nlsat/nlsat_evaluator.h"
 | 
						|
#include "math/polynomial/algebraic_numbers.h"
 | 
						|
#include "util/ref_buffer.h"
 | 
						|
 | 
						|
namespace nlsat {
 | 
						|
 | 
						|
    typedef polynomial::polynomial_ref_vector polynomial_ref_vector;
 | 
						|
    typedef ref_buffer<poly, pmanager> polynomial_ref_buffer;
 | 
						|
 | 
						|
    struct explain::imp {
 | 
						|
        solver &                m_solver;
 | 
						|
        assignment const &      m_assignment;
 | 
						|
        atom_vector const &     m_atoms;
 | 
						|
        atom_vector const &     m_x2eq;
 | 
						|
        anum_manager &          m_am;
 | 
						|
        polynomial::cache &     m_cache;
 | 
						|
        pmanager &              m_pm;
 | 
						|
        polynomial_ref_vector   m_ps;
 | 
						|
        polynomial_ref_vector   m_ps2;
 | 
						|
        polynomial_ref_vector   m_psc_tmp;
 | 
						|
        polynomial_ref_vector   m_factors, m_factors_save;
 | 
						|
        scoped_anum_vector      m_roots_tmp;
 | 
						|
        bool                    m_simplify_cores;
 | 
						|
        bool                    m_full_dimensional;
 | 
						|
        bool                    m_minimize_cores;
 | 
						|
        bool                    m_factor;
 | 
						|
        bool                    m_signed_project;
 | 
						|
        bool                    m_cell_sample;
 | 
						|
 | 
						|
 | 
						|
        struct todo_set {
 | 
						|
            polynomial::cache  &    m_cache;
 | 
						|
            polynomial_ref_vector   m_set;
 | 
						|
            svector<char>           m_in_set;
 | 
						|
            
 | 
						|
            todo_set(polynomial::cache & u):m_cache(u), m_set(u.pm()) {}
 | 
						|
 | 
						|
            void reset() {
 | 
						|
                pmanager & pm = m_set.m();
 | 
						|
                unsigned sz = m_set.size();
 | 
						|
                for (unsigned i = 0; i < sz; i++) {
 | 
						|
                    m_in_set[pm.id(m_set.get(i))] = false;
 | 
						|
                }
 | 
						|
                m_set.reset();
 | 
						|
            }
 | 
						|
            
 | 
						|
            void insert(poly * p) {
 | 
						|
                pmanager & pm = m_set.m();
 | 
						|
                p = m_cache.mk_unique(p);
 | 
						|
                unsigned pid = pm.id(p);
 | 
						|
                if (m_in_set.get(pid, false))
 | 
						|
                    return;
 | 
						|
                m_in_set.setx(pid, true, false);
 | 
						|
                m_set.push_back(p);
 | 
						|
            }
 | 
						|
            
 | 
						|
            bool empty() const { return m_set.empty(); }
 | 
						|
            
 | 
						|
            // Return max variable in todo_set
 | 
						|
            var max_var() const {
 | 
						|
                pmanager & pm = m_set.m();
 | 
						|
                var max = null_var;
 | 
						|
                unsigned sz = m_set.size();
 | 
						|
                for (unsigned i = 0; i < sz; i++) {
 | 
						|
                    var x = pm.max_var(m_set.get(i));
 | 
						|
                    SASSERT(x != null_var);
 | 
						|
                    if (max == null_var || x > max)
 | 
						|
                        max = x;
 | 
						|
                }
 | 
						|
                return max;
 | 
						|
            }
 | 
						|
            
 | 
						|
            /**
 | 
						|
               \brief Remove the maximal polynomials from the set and store
 | 
						|
               them in max_polys. Return the maximal variable
 | 
						|
             */
 | 
						|
            var extract_max_polys(polynomial_ref_vector & max_polys) {
 | 
						|
                max_polys.reset();
 | 
						|
                var x = max_var();
 | 
						|
                pmanager & pm = m_set.m();
 | 
						|
                unsigned sz = m_set.size();
 | 
						|
                unsigned j  = 0;
 | 
						|
                for (unsigned i = 0; i < sz; i++) {
 | 
						|
                    poly * p = m_set.get(i);
 | 
						|
                    var y = pm.max_var(p);
 | 
						|
                    SASSERT(y <= x);
 | 
						|
                    if (y == x) {
 | 
						|
                        max_polys.push_back(p);
 | 
						|
                        m_in_set[pm.id(p)] = false;
 | 
						|
                    }
 | 
						|
                    else {
 | 
						|
                        m_set.set(j, p);
 | 
						|
                        j++;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                m_set.shrink(j);
 | 
						|
                return x;
 | 
						|
            }
 | 
						|
        };
 | 
						|
        
 | 
						|
        // temporary field for store todo set of polynomials
 | 
						|
        todo_set                m_todo;
 | 
						|
 | 
						|
        // temporary fields for preprocessing core
 | 
						|
        scoped_literal_vector   m_core1;
 | 
						|
        scoped_literal_vector   m_core2;
 | 
						|
 | 
						|
        // temporary fields for storing the result
 | 
						|
        scoped_literal_vector * m_result = nullptr;
 | 
						|
        svector<char>           m_already_added_literal;
 | 
						|
 | 
						|
        evaluator &             m_evaluator;
 | 
						|
 | 
						|
        imp(solver & s, assignment const & x2v, polynomial::cache & u, atom_vector const & atoms, atom_vector const & x2eq,
 | 
						|
            evaluator & ev, bool is_sample):
 | 
						|
            m_solver(s),
 | 
						|
            m_assignment(x2v),
 | 
						|
            m_atoms(atoms),
 | 
						|
            m_x2eq(x2eq),
 | 
						|
            m_am(x2v.am()),
 | 
						|
            m_cache(u), 
 | 
						|
            m_pm(u.pm()),
 | 
						|
            m_ps(m_pm),
 | 
						|
            m_ps2(m_pm),
 | 
						|
            m_psc_tmp(m_pm),
 | 
						|
            m_factors(m_pm),
 | 
						|
            m_factors_save(m_pm),
 | 
						|
            m_roots_tmp(m_am),
 | 
						|
            m_cell_sample(is_sample),
 | 
						|
            m_todo(u),
 | 
						|
            m_core1(s),
 | 
						|
            m_core2(s),
 | 
						|
            m_evaluator(ev) {
 | 
						|
            m_simplify_cores   = false;
 | 
						|
            m_full_dimensional = false;
 | 
						|
            m_minimize_cores   = false;
 | 
						|
            m_signed_project   = false;
 | 
						|
        }
 | 
						|
 | 
						|
        std::ostream& display(std::ostream & out, polynomial_ref const & p) const {
 | 
						|
            m_pm.display(out, p, m_solver.display_proc());
 | 
						|
            return out;
 | 
						|
        }
 | 
						|
        
 | 
						|
        std::ostream& display(std::ostream & out, polynomial_ref_vector const & ps, char const * delim = "\n") const {
 | 
						|
            for (unsigned i = 0; i < ps.size(); i++) {
 | 
						|
                if (i > 0)
 | 
						|
                    out << delim;
 | 
						|
                m_pm.display(out, ps.get(i), m_solver.display_proc());
 | 
						|
            }
 | 
						|
            return out;
 | 
						|
        }
 | 
						|
        
 | 
						|
        std::ostream& display(std::ostream & out, literal l) const { return m_solver.display(out, l); }
 | 
						|
        std::ostream& display_var(std::ostream & out, var x) const { return m_solver.display(out, x); }
 | 
						|
        std::ostream& display(std::ostream & out, unsigned sz, literal const * ls) const { return m_solver.display(out, sz, ls); }
 | 
						|
        std::ostream& display(std::ostream & out, literal_vector const & ls) const { return display(out, ls.size(), ls.data()); }
 | 
						|
        std::ostream& display(std::ostream & out, scoped_literal_vector const & ls) const { return display(out, ls.size(), ls.data()); }
 | 
						|
 | 
						|
        /**
 | 
						|
           \brief Add literal to the result vector.
 | 
						|
        */
 | 
						|
        void add_literal(literal l) {
 | 
						|
            SASSERT(m_result != 0);
 | 
						|
            SASSERT(l != true_literal); 
 | 
						|
            if (l == false_literal)
 | 
						|
                return;
 | 
						|
            unsigned lidx = l.index();
 | 
						|
            if (m_already_added_literal.get(lidx, false))
 | 
						|
                return;
 | 
						|
            TRACE(nlsat_explain, tout << "adding literal: " << lidx << "\n"; m_solver.display(tout, l) << "\n";);
 | 
						|
            m_already_added_literal.setx(lidx, true, false);
 | 
						|
            m_result->push_back(l);
 | 
						|
        }
 | 
						|
 | 
						|
        /**
 | 
						|
           \brief Reset m_already_added vector using m_result
 | 
						|
         */
 | 
						|
        void reset_already_added() {
 | 
						|
            SASSERT(m_result != nullptr);
 | 
						|
            for (literal lit : *m_result) 
 | 
						|
                m_already_added_literal[lit.index()] = false;
 | 
						|
            SASSERT(check_already_added());
 | 
						|
        }
 | 
						|
 | 
						|
 | 
						|
        /**
 | 
						|
           \brief evaluate the given polynomial in the current interpretation.
 | 
						|
           max_var(p) must be assigned in the current interpretation.
 | 
						|
        */
 | 
						|
        ::sign sign(polynomial_ref const & p) {
 | 
						|
            SASSERT(max_var(p) == null_var || m_assignment.is_assigned(max_var(p)));
 | 
						|
            auto s = m_am.eval_sign_at(p, m_assignment);
 | 
						|
            TRACE(nlsat_explain, tout << "p: " << p << " var: " << max_var(p) << " sign: " << s << "\n";);
 | 
						|
            return s;
 | 
						|
        }
 | 
						|
        
 | 
						|
        /**
 | 
						|
           \brief Wrapper for factorization
 | 
						|
        */
 | 
						|
        void factor(polynomial_ref & p, polynomial_ref_vector & fs) {
 | 
						|
            // TODO: add params, caching
 | 
						|
            TRACE(nlsat_factor, tout << "factor\n" << p << "\n";);
 | 
						|
            fs.reset();
 | 
						|
            m_cache.factor(p.get(), fs);
 | 
						|
        }
 | 
						|
 | 
						|
        /**
 | 
						|
           \brief Wrapper for psc chain computation
 | 
						|
        */
 | 
						|
        void psc_chain(polynomial_ref & p, polynomial_ref & q, unsigned x, polynomial_ref_vector & result) {
 | 
						|
            // TODO caching
 | 
						|
            SASSERT(max_var(p) == max_var(q));
 | 
						|
            SASSERT(max_var(p) == x);
 | 
						|
            m_cache.psc_chain(p, q, x, result);
 | 
						|
        }
 | 
						|
        
 | 
						|
        /**
 | 
						|
           \brief Store in ps the polynomials occurring in the given literals.
 | 
						|
        */
 | 
						|
        void collect_polys(unsigned num, literal const * ls, polynomial_ref_vector & ps) {
 | 
						|
            ps.reset();
 | 
						|
            for (unsigned i = 0; i < num; i++) {
 | 
						|
                atom * a = m_atoms[ls[i].var()];
 | 
						|
                SASSERT(a != 0);
 | 
						|
                if (a->is_ineq_atom()) {
 | 
						|
                    unsigned sz = to_ineq_atom(a)->size();
 | 
						|
                    for (unsigned j = 0; j < sz; j++)
 | 
						|
                        ps.push_back(to_ineq_atom(a)->p(j));
 | 
						|
                }
 | 
						|
                else {
 | 
						|
                    ps.push_back(to_root_atom(a)->p());
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /**
 | 
						|
           \brief Add literal p != 0 into m_result.
 | 
						|
        */
 | 
						|
        ptr_vector<poly>  m_zero_fs;
 | 
						|
        bool_vector     m_is_even;
 | 
						|
        struct restore_factors {
 | 
						|
            polynomial_ref_vector&   m_factors, &m_factors_save;
 | 
						|
            unsigned num_saved = 0;
 | 
						|
            restore_factors(polynomial_ref_vector&f, polynomial_ref_vector& fs):
 | 
						|
                m_factors(f), m_factors_save(fs)
 | 
						|
            {
 | 
						|
                num_saved = m_factors_save.size();
 | 
						|
                m_factors_save.append(m_factors);
 | 
						|
            }
 | 
						|
 | 
						|
            ~restore_factors() {
 | 
						|
                m_factors.reset();
 | 
						|
                m_factors.append(m_factors_save.size() - num_saved, m_factors_save.data() + num_saved);
 | 
						|
                m_factors_save.shrink(num_saved);
 | 
						|
            }
 | 
						|
            
 | 
						|
        };
 | 
						|
 | 
						|
        void add_zero_assumption(polynomial_ref& p) {
 | 
						|
            // If p is of the form p1^n1 * ... * pk^nk,
 | 
						|
            // then only the factors that are zero in the current interpretation needed to be considered.
 | 
						|
            // I don't want to create a nested conjunction in the clause. 
 | 
						|
            // Then, I assert p_i1 * ... * p_im  != 0
 | 
						|
            {
 | 
						|
                restore_factors _restore(m_factors, m_factors_save);
 | 
						|
                factor(p, m_factors);
 | 
						|
                unsigned num_factors = m_factors.size();
 | 
						|
                m_zero_fs.reset();
 | 
						|
                m_is_even.reset();
 | 
						|
                polynomial_ref f(m_pm);
 | 
						|
                for (unsigned i = 0; i < num_factors; i++) {
 | 
						|
                    f = m_factors.get(i);
 | 
						|
                    if (is_zero(sign(f))) {
 | 
						|
                        m_zero_fs.push_back(m_factors.get(i));
 | 
						|
                        m_is_even.push_back(false);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
            SASSERT(!m_zero_fs.empty()); // one of the factors must be zero in the current interpretation, since p is zero in it.
 | 
						|
            literal l = m_solver.mk_ineq_literal(atom::EQ, m_zero_fs.size(), m_zero_fs.data(), m_is_even.data());
 | 
						|
            l.neg();
 | 
						|
            TRACE(nlsat_explain, tout << "adding (zero assumption) literal:\n"; display(tout, l); tout << "\n";);
 | 
						|
            add_literal(l);
 | 
						|
        }
 | 
						|
 | 
						|
        void add_simple_assumption(atom::kind k, poly * p, bool sign = false) {
 | 
						|
            SASSERT(k == atom::EQ || k == atom::LT || k == atom::GT);
 | 
						|
            bool is_even = false;
 | 
						|
            bool_var b = m_solver.mk_ineq_atom(k, 1, &p, &is_even);
 | 
						|
            literal l(b, !sign);
 | 
						|
            add_literal(l);
 | 
						|
        }
 | 
						|
 | 
						|
        void add_assumption(atom::kind k, poly * p, bool sign = false) {
 | 
						|
            // TODO: factor
 | 
						|
            add_simple_assumption(k, p, sign);
 | 
						|
        }
 | 
						|
        
 | 
						|
        /**
 | 
						|
           \brief Eliminate "vanishing leading coefficients" of p.
 | 
						|
           That is, coefficients that vanish in the current
 | 
						|
           interpretation.  The resultant p is a reduct of p s.t. its
 | 
						|
           leading coefficient does not vanish in the current
 | 
						|
           interpretation. If all coefficients of p vanish, then 
 | 
						|
           the resultant p is the zero polynomial.
 | 
						|
        */
 | 
						|
        void elim_vanishing(polynomial_ref & p) {
 | 
						|
            SASSERT(!is_const(p));
 | 
						|
            var x = max_var(p);
 | 
						|
            unsigned k = degree(p, x);
 | 
						|
            SASSERT(k > 0);
 | 
						|
            polynomial_ref lc(m_pm);
 | 
						|
            polynomial_ref reduct(m_pm);
 | 
						|
            while (true) {
 | 
						|
                if (is_const(p))
 | 
						|
                    return;
 | 
						|
                if (k == 0) {
 | 
						|
                    // x vanished from p, peek next maximal variable
 | 
						|
                    x = max_var(p);
 | 
						|
                    SASSERT(x != null_var);
 | 
						|
                    k = degree(p, x);
 | 
						|
                }
 | 
						|
                if (m_pm.nonzero_const_coeff(p, x, k)) {
 | 
						|
                    TRACE(nlsat_explain, tout << "nonzero const x" << x << "\n";);
 | 
						|
                    return; // lc is a nonzero constant
 | 
						|
                }
 | 
						|
                lc = m_pm.coeff(p, x, k, reduct);
 | 
						|
                TRACE(nlsat_explain, tout << "lc: " << lc << " reduct: " << reduct << "\n";);
 | 
						|
                if (!is_zero(lc)) {
 | 
						|
                    if (!::is_zero(sign(lc))) {
 | 
						|
                        TRACE(nlsat_explain, tout << "lc does no vaninsh\n";);
 | 
						|
                        return;
 | 
						|
                    }
 | 
						|
                    TRACE(nlsat_explain, tout << "got a zero sign on lc\n";);
 | 
						|
 | 
						|
 | 
						|
                    // lc is not the zero polynomial, but it vanished in the current interpretation.
 | 
						|
                    // so we keep searching...
 | 
						|
                    TRACE(nlsat_explain, tout << "adding zero assumption for var:"; m_solver.display_var(tout, x); tout << ", degree k:" << k << ", p:" ; display(tout, p) << "\n";);
 | 
						|
 | 
						|
                    add_zero_assumption(lc);
 | 
						|
                }
 | 
						|
                if (k == 0) {
 | 
						|
                    // all coefficients of p vanished in the current interpretation,
 | 
						|
                    // and were added as assumptions.
 | 
						|
                    p = m_pm.mk_zero();
 | 
						|
                    TRACE(nlsat_explain, tout << "all coefficients of p vanished\n";);
 | 
						|
                    return;
 | 
						|
                }
 | 
						|
                k--;
 | 
						|
                p = reduct;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        
 | 
						|
        /**
 | 
						|
           Eliminate vanishing coefficients of polynomials in ps.
 | 
						|
           The coefficients that are zero (i.e., vanished) are added 
 | 
						|
           as assumptions into m_result.
 | 
						|
        */
 | 
						|
        void elim_vanishing(polynomial_ref_vector & ps) {
 | 
						|
            unsigned j  = 0;
 | 
						|
            unsigned sz = ps.size(); 
 | 
						|
            polynomial_ref p(m_pm);
 | 
						|
            for (unsigned i = 0; i < sz; i++) {
 | 
						|
                p = ps.get(i);
 | 
						|
                elim_vanishing(p);
 | 
						|
                if (!is_const(p)) {
 | 
						|
                    ps.set(j, p);
 | 
						|
                    j++;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            ps.shrink(j);
 | 
						|
        }
 | 
						|
 | 
						|
        /**
 | 
						|
           Normalize literal with respect to given maximal variable.
 | 
						|
           The basic idea is to eliminate vanishing (leading) coefficients from a (arithmetic) literal,
 | 
						|
           and factors from lower stages. 
 | 
						|
           
 | 
						|
           The vanishing coefficients and factors from lower stages are added as assumptions to the lemma
 | 
						|
           being generated.
 | 
						|
           
 | 
						|
           Example 1) 
 | 
						|
           Assume 
 | 
						|
              - l is of the form  (y^2 - 2)*x^3 + y*x + 1 > 0 
 | 
						|
              - x is the maximal variable
 | 
						|
              - y is assigned to sqrt(2)
 | 
						|
           Thus, (y^2 - 2) the coefficient of x^3 vanished. This method returns
 | 
						|
           y*x + 1 > 0 and adds the assumption (y^2 - 2) = 0 to the lemma
 | 
						|
 | 
						|
           Example 2)
 | 
						|
           Assume
 | 
						|
              - l is of the form (x + 2)*(y - 1) > 0
 | 
						|
              - x is the maximal variable
 | 
						|
              - y is assigned to 0
 | 
						|
           (x + 2) < 0 is returned and assumption (y - 1) < 0 is added as an assumption.   
 | 
						|
 | 
						|
           Remark: root atoms are not normalized
 | 
						|
        */
 | 
						|
        literal normalize(literal l, var max) {
 | 
						|
            bool_var b = l.var();
 | 
						|
            if (b == true_bool_var)
 | 
						|
                return l;
 | 
						|
            SASSERT(m_atoms[b] != 0);
 | 
						|
            if (m_atoms[b]->is_ineq_atom()) {
 | 
						|
                polynomial_ref_buffer ps(m_pm);
 | 
						|
                sbuffer<bool>         is_even;
 | 
						|
                polynomial_ref p(m_pm);
 | 
						|
                ineq_atom * a  = to_ineq_atom(m_atoms[b]);
 | 
						|
                int atom_sign = 1;
 | 
						|
                unsigned sz = a->size();
 | 
						|
                bool normalized = false; // true if the literal needs to be normalized
 | 
						|
                for (unsigned i = 0; i < sz; i++) {
 | 
						|
                    p = a->p(i);
 | 
						|
                    if (max_var(p) == max)
 | 
						|
                        elim_vanishing(p); // eliminate vanishing coefficients of max
 | 
						|
                    if (is_const(p) || max_var(p) < max) {
 | 
						|
                        int s = sign(p); 
 | 
						|
                        if (!is_const(p)) {
 | 
						|
                            SASSERT(max_var(p) != null_var);
 | 
						|
                            SASSERT(max_var(p) < max);
 | 
						|
                            // factor p is a lower stage polynomial, so we should add assumption to justify p being eliminated
 | 
						|
                            if (s == 0)
 | 
						|
                                add_simple_assumption(atom::EQ, p);  // add assumption p = 0
 | 
						|
                            else if (a->is_even(i))
 | 
						|
                                add_simple_assumption(atom::EQ, p, true); // add assumption p != 0 
 | 
						|
                            else if (s < 0)
 | 
						|
                                add_simple_assumption(atom::LT, p); // add assumption p < 0
 | 
						|
                            else
 | 
						|
                                add_simple_assumption(atom::GT, p); // add assumption p > 0
 | 
						|
                        }
 | 
						|
                        if (s == 0) {
 | 
						|
                            bool atom_val = a->get_kind() == atom::EQ;
 | 
						|
                            bool lit_val  = l.sign() ? !atom_val : atom_val;
 | 
						|
                            return lit_val ? true_literal : false_literal;
 | 
						|
                        }
 | 
						|
                        else if (s < 0 && a->is_odd(i)) {
 | 
						|
                            atom_sign = -atom_sign;
 | 
						|
                        }
 | 
						|
                        normalized = true;
 | 
						|
                    }
 | 
						|
                    else {
 | 
						|
                        if (p != a->p(i)) {
 | 
						|
                            SASSERT(!m_pm.eq(p, a->p(i)));
 | 
						|
                            normalized = true;
 | 
						|
                        }
 | 
						|
                        is_even.push_back(a->is_even(i));
 | 
						|
                        ps.push_back(p);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                if (ps.empty()) {
 | 
						|
                    SASSERT(atom_sign != 0);
 | 
						|
                    // LHS is positive or negative. It is positive if atom_sign > 0 and negative if atom_sign < 0
 | 
						|
                    bool atom_val;
 | 
						|
                    if (a->get_kind() == atom::EQ)
 | 
						|
                        atom_val = false;
 | 
						|
                    else if (a->get_kind() == atom::LT)
 | 
						|
                        atom_val = atom_sign < 0;
 | 
						|
                    else 
 | 
						|
                        atom_val = atom_sign > 0;
 | 
						|
                    bool lit_val  = l.sign() ? !atom_val : atom_val;
 | 
						|
                    return lit_val ? true_literal : false_literal;
 | 
						|
                }
 | 
						|
                else if (normalized) {
 | 
						|
                    atom::kind new_k = a->get_kind();
 | 
						|
                    if (atom_sign < 0)
 | 
						|
                        new_k = atom::flip(new_k);
 | 
						|
                    literal new_l = m_solver.mk_ineq_literal(new_k, ps.size(), ps.data(), is_even.data());
 | 
						|
                    if (l.sign())
 | 
						|
                        new_l.neg();
 | 
						|
                    return new_l;
 | 
						|
                }
 | 
						|
                else {
 | 
						|
                    SASSERT(atom_sign > 0);
 | 
						|
                    return l;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                return l;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /**
 | 
						|
           Normalize literals (in the conflicting core) with respect
 | 
						|
           to given maximal variable.  The basic idea is to eliminate
 | 
						|
           vanishing (leading) coefficients (and factors from lower
 | 
						|
           stages) from (arithmetic) literals,
 | 
						|
        */
 | 
						|
        void normalize(scoped_literal_vector & C, var max) {
 | 
						|
            unsigned sz = C.size();
 | 
						|
            unsigned j  = 0;
 | 
						|
            for (unsigned i = 0; i < sz; i++) {
 | 
						|
                literal new_l = normalize(C[i], max);
 | 
						|
                if (new_l == true_literal)
 | 
						|
                    continue;
 | 
						|
                if (new_l == false_literal) {
 | 
						|
                    // false literal was created. The assumptions added are sufficient for implying the conflict.
 | 
						|
                    C.reset();
 | 
						|
                    return;
 | 
						|
                }
 | 
						|
                C.set(j, new_l);
 | 
						|
                j++;
 | 
						|
            }
 | 
						|
            C.shrink(j);
 | 
						|
        }
 | 
						|
 | 
						|
        var max_var(poly const * p) { return m_pm.max_var(p); }
 | 
						|
 | 
						|
        /**
 | 
						|
           \brief Return the maximal variable in a set of nonconstant polynomials.
 | 
						|
        */
 | 
						|
        var max_var(polynomial_ref_vector const & ps) {
 | 
						|
            if (ps.empty())
 | 
						|
                return null_var;
 | 
						|
            var max = max_var(ps.get(0)); 
 | 
						|
            SASSERT(max != null_var); // there are no constant polynomials in ps
 | 
						|
            unsigned sz = ps.size();
 | 
						|
            for (unsigned i = 1; i < sz; i++) {
 | 
						|
                var curr = m_pm.max_var(ps.get(i));
 | 
						|
                SASSERT(curr != null_var);
 | 
						|
                if (curr > max)
 | 
						|
                    max = curr;
 | 
						|
            }
 | 
						|
            return max;
 | 
						|
        }
 | 
						|
 | 
						|
        polynomial::var max_var(literal l) {
 | 
						|
            atom * a  = m_atoms[l.var()];
 | 
						|
            if (a != nullptr)
 | 
						|
                return a->max_var();
 | 
						|
            else
 | 
						|
                return null_var;
 | 
						|
        }
 | 
						|
 | 
						|
        /**
 | 
						|
           \brief Return the maximal variable in the given set of literals
 | 
						|
         */
 | 
						|
        var max_var(unsigned sz, literal const * ls) {
 | 
						|
            var max = null_var;
 | 
						|
            for (unsigned i = 0; i < sz; i++) {
 | 
						|
                literal l = ls[i];
 | 
						|
                atom * a  = m_atoms[l.var()];
 | 
						|
                if (a != nullptr) {
 | 
						|
                    var x = a->max_var();
 | 
						|
                    SASSERT(x != null_var);
 | 
						|
                    if (max == null_var || x > max) 
 | 
						|
                        max = x;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            return max;
 | 
						|
        }
 | 
						|
 | 
						|
        /**
 | 
						|
           \brief Move the polynomials in q in ps that do not contain x to qs.
 | 
						|
        */
 | 
						|
        void keep_p_x(polynomial_ref_vector & ps, var x, polynomial_ref_vector & qs) {
 | 
						|
            unsigned sz = ps.size();
 | 
						|
            unsigned j  = 0;
 | 
						|
            for (unsigned i = 0; i < sz; i++) {
 | 
						|
                poly * q = ps.get(i);
 | 
						|
                if (max_var(q) != x) {
 | 
						|
                    qs.push_back(q);
 | 
						|
                }
 | 
						|
                else {
 | 
						|
                    ps.set(j, q);
 | 
						|
                    j++;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            ps.shrink(j);
 | 
						|
        }
 | 
						|
 | 
						|
        /**
 | 
						|
           \brief Add factors of p to todo
 | 
						|
        */
 | 
						|
        void insert_fresh_factors_in_todo(polynomial_ref & p) {
 | 
						|
            if (is_const(p))
 | 
						|
                return;
 | 
						|
            elim_vanishing(p);
 | 
						|
            if (is_const(p))
 | 
						|
                return;
 | 
						|
            if (m_factor) {
 | 
						|
                restore_factors _restore(m_factors, m_factors_save);
 | 
						|
                factor(p, m_factors);
 | 
						|
                TRACE(nlsat_explain, display(tout << "adding factors of\n", p); tout << "\n" << m_factors << "\n";);
 | 
						|
                polynomial_ref f(m_pm);
 | 
						|
                for (unsigned i = 0; i < m_factors.size(); i++) {
 | 
						|
                    f = m_factors.get(i);
 | 
						|
                    elim_vanishing(f);
 | 
						|
                    if (!is_const(f)) {
 | 
						|
                        TRACE(nlsat_explain, tout << "adding factor:\n"; display(tout, f); tout << "\n";);
 | 
						|
                        m_todo.insert(f);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                m_todo.insert(p);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
// The monomials have to be square free according to
 | 
						|
//"An improved projection operation for cylindrical algebraic decomposition of three-dimensional space", by McCallum, Scott
 | 
						|
            
 | 
						|
        bool is_square_free(polynomial_ref_vector &ps, var x) {
 | 
						|
            polynomial_ref p(m_pm);
 | 
						|
            polynomial_ref lc_poly(m_pm);
 | 
						|
            polynomial_ref disc_poly(m_pm); 
 | 
						|
 | 
						|
            for (unsigned i = 0; i < ps.size(); i++) {
 | 
						|
                p = ps.get(i);
 | 
						|
                unsigned k_deg = m_pm.degree(p, x); 
 | 
						|
                if (k_deg == 0)
 | 
						|
                    continue;
 | 
						|
                // p depends on x
 | 
						|
                disc_poly = discriminant(p, x); // Use global helper
 | 
						|
                if (sign(disc_poly) == 0) { // Discriminant is zero
 | 
						|
                    TRACE(nlsat_explain, tout << "p is not square free:\n ";
 | 
						|
                          display(tout, p); tout << "\ndiscriminant: "; display(tout, disc_poly) << "\n";
 | 
						|
                          m_solver.display_assignment(tout) << '\n';
 | 
						|
                          m_solver.display_var(tout << "x:", x) << '\n';
 | 
						|
                        );
 | 
						|
 | 
						|
                    return false;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
        
 | 
						|
     	// If each p from ps is square-free then add the leading coefficents to the projection. 
 | 
						|
	// Otherwise, add each coefficient of each p to the projection.
 | 
						|
        void add_lcs(polynomial_ref_vector &ps, var x) {
 | 
						|
            polynomial_ref p(m_pm);
 | 
						|
            polynomial_ref coeff(m_pm);
 | 
						|
 | 
						|
            bool sqf = is_square_free(ps, x);
 | 
						|
            // Add the leading or all coeffs, depening on being square-free
 | 
						|
            for (unsigned i = 0; i < ps.size(); i++) {
 | 
						|
                p = ps.get(i);
 | 
						|
                unsigned k_deg = m_pm.degree(p, x);
 | 
						|
                if (k_deg == 0) continue;
 | 
						|
                // p depends on x
 | 
						|
                TRACE(nlsat_explain, tout << "processing poly of degree " << k_deg << " w.r.t x" << x << ": "; display(tout, p) << "\n";);
 | 
						|
                for (unsigned j_coeff_deg = k_deg; j_coeff_deg >= 1; j_coeff_deg--) { 
 | 
						|
                    coeff = m_pm.coeff(p, x, j_coeff_deg);
 | 
						|
                    TRACE(nlsat_explain, tout << "    coeff deg " << j_coeff_deg << ": "; display(tout, coeff) << "\n";);
 | 
						|
                    insert_fresh_factors_in_todo(coeff);
 | 
						|
                    if (sqf)
 | 
						|
                        break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        void psc_resultant_sample(polynomial_ref_vector &ps, var x, polynomial_ref_vector & samples){
 | 
						|
            polynomial_ref p(m_pm);
 | 
						|
            polynomial_ref q(m_pm);
 | 
						|
            SASSERT(samples.size() <= 2);
 | 
						|
 | 
						|
            for (unsigned i = 0; i < ps.size(); i++){
 | 
						|
                p = ps.get(i);
 | 
						|
                for (unsigned j = 0; j < samples.size(); j++){
 | 
						|
                    q = samples.get(j);
 | 
						|
                    if (!m_pm.eq(p, q)) {
 | 
						|
                        psc(p, q, x);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        
 | 
						|
        void add_zero_assumption_on_factor(polynomial_ref& f) {
 | 
						|
            display(std::cout << "zero factors \n", f); 
 | 
						|
        }
 | 
						|
        // this function also explains the value 0, if met
 | 
						|
        bool coeffs_are_zeroes(polynomial_ref &s) {
 | 
						|
            restore_factors _restore(m_factors, m_factors_save);
 | 
						|
            factor(s, m_factors);
 | 
						|
            unsigned num_factors = m_factors.size();
 | 
						|
            m_zero_fs.reset();
 | 
						|
            m_is_even.reset();
 | 
						|
            polynomial_ref f(m_pm);
 | 
						|
            bool have_zero = false;
 | 
						|
            for (unsigned i = 0; i < num_factors; i++) {
 | 
						|
                f = m_factors.get(i);
 | 
						|
                if (coeffs_are_zeroes_in_factor(f)) {
 | 
						|
                    have_zero = true;
 | 
						|
                    break;
 | 
						|
                } 
 | 
						|
            }
 | 
						|
            if (!have_zero)
 | 
						|
                return false;
 | 
						|
            var x = max_var(f);
 | 
						|
            unsigned n = degree(f, x);
 | 
						|
            auto c = polynomial_ref(this->m_pm);
 | 
						|
            for (unsigned j = 0; j <= n; j++) {
 | 
						|
                c = m_pm.coeff(s, x, j);
 | 
						|
                SASSERT(sign(c) == 0);
 | 
						|
                ensure_sign(c);
 | 
						|
            }
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
    
 | 
						|
 | 
						|
        bool coeffs_are_zeroes_in_factor(polynomial_ref & s) {
 | 
						|
            var x = max_var(s);
 | 
						|
            unsigned n = degree(s, x);
 | 
						|
            auto c = polynomial_ref(this->m_pm);
 | 
						|
            for (unsigned j = 0; j <= n; j++) {
 | 
						|
                c = m_pm.coeff(s, x, j);
 | 
						|
                if (sign(c) != 0)
 | 
						|
                    return false;
 | 
						|
            }
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
 | 
						|
        /**
 | 
						|
           \brief Add v-psc(p, q, x) into m_todo
 | 
						|
        */
 | 
						|
        void psc(polynomial_ref & p, polynomial_ref & q, var x) {
 | 
						|
            polynomial_ref_vector & S = m_psc_tmp;
 | 
						|
            polynomial_ref s(m_pm);
 | 
						|
 | 
						|
            psc_chain(p, q, x, S);
 | 
						|
            unsigned sz = S.size();
 | 
						|
            TRACE(nlsat_explain, tout << "computing psc of\n"; display(tout, p); tout << "\n"; display(tout, q); tout << "\n";
 | 
						|
                  for (unsigned i = 0; i < sz; ++i) {
 | 
						|
                      s = S.get(i);
 | 
						|
                      tout << "psc: " << s << "\n";
 | 
						|
                  });
 | 
						|
 | 
						|
            for (unsigned i = 0; i < sz; i++) {
 | 
						|
                s = S.get(i);
 | 
						|
                TRACE(nlsat_explain, display(tout << "processing psc(" << i << ")\n", s) << "\n";); 
 | 
						|
                if (is_zero(s)) {
 | 
						|
                    TRACE(nlsat_explain, tout << "skipping psc is the zero polynomial\n";);
 | 
						|
                    continue;
 | 
						|
                }
 | 
						|
                if (is_const(s)) {
 | 
						|
                    TRACE(nlsat_explain, tout << "done, psc is a constant\n";);
 | 
						|
                    return;
 | 
						|
                }
 | 
						|
                if (is_zero(sign(s))) {
 | 
						|
                    TRACE(nlsat_explain, tout << "psc vanished, adding zero assumption\n";);
 | 
						|
                    add_zero_assumption(s);
 | 
						|
                    continue;
 | 
						|
                }
 | 
						|
                TRACE(nlsat_explain, 
 | 
						|
                      tout << "adding v-psc of\n";
 | 
						|
                      display(tout, p);
 | 
						|
                      tout << "\n";
 | 
						|
                      display(tout, q);
 | 
						|
                      tout << "\n---->\n";
 | 
						|
                      display(tout, s);
 | 
						|
                      tout << "\n";);
 | 
						|
                // s did not vanish completely, but its leading coefficient may have vanished
 | 
						|
                insert_fresh_factors_in_todo(s);
 | 
						|
                return; 
 | 
						|
            }
 | 
						|
        }
 | 
						|
        
 | 
						|
        /**
 | 
						|
           \brief For each p in ps, add v-psc(x, p, p') into m_todo
 | 
						|
 | 
						|
           \pre all polynomials in ps contain x
 | 
						|
 | 
						|
           Remark: the leading coefficients do not vanish in the current model,
 | 
						|
           since all polynomials in ps were pre-processed using elim_vanishing.
 | 
						|
        */
 | 
						|
        void psc_discriminant(polynomial_ref_vector & ps, var x) {
 | 
						|
            polynomial_ref p(m_pm);
 | 
						|
            polynomial_ref p_prime(m_pm);
 | 
						|
            unsigned sz = ps.size();
 | 
						|
            for (unsigned i = 0; i < sz; i++) {
 | 
						|
                p = ps.get(i);
 | 
						|
                if (degree(p, x) < 2)
 | 
						|
                    continue;
 | 
						|
                p_prime = derivative(p, x);
 | 
						|
                psc(p, p_prime, x);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /**
 | 
						|
           \brief For each p and q in ps, p != q, add v-psc(x, p, q) into m_todo
 | 
						|
 | 
						|
           \pre all polynomials in ps contain x
 | 
						|
 | 
						|
           Remark: the leading coefficients do not vanish in the current model,
 | 
						|
           since all polynomials in ps were pre-processed using elim_vanishing.
 | 
						|
        */
 | 
						|
        void psc_resultant(polynomial_ref_vector & ps, var x) {
 | 
						|
            polynomial_ref p(m_pm);
 | 
						|
            polynomial_ref q(m_pm);
 | 
						|
            unsigned sz = ps.size();
 | 
						|
            for (unsigned i = 0; i < sz - 1; i++) {
 | 
						|
                p = ps.get(i);
 | 
						|
                for (unsigned j = i + 1; j < sz; j++) {
 | 
						|
                    q = ps.get(j);
 | 
						|
                    psc(p, q, x);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        void test_root_literal(atom::kind k, var y, unsigned i, poly * p, scoped_literal_vector& result) {
 | 
						|
            m_result = &result;
 | 
						|
            add_root_literal(k, y, i, p);
 | 
						|
            reset_already_added();
 | 
						|
            m_result = nullptr;
 | 
						|
        }
 | 
						|
 | 
						|
        
 | 
						|
        void add_root_literal(atom::kind k, var y, unsigned i, poly * p) {
 | 
						|
            polynomial_ref pr(p, m_pm);
 | 
						|
            TRACE(nlsat_explain, 
 | 
						|
                  display(tout << "x" << y << " " << k << "[" << i << "](", pr); tout << ")\n";);
 | 
						|
            
 | 
						|
            if (!mk_linear_root(k, y, i, p) &&
 | 
						|
                !mk_quadratic_root(k, y, i, p)) {
 | 
						|
                bool_var b = m_solver.mk_root_atom(k, y, i, p);
 | 
						|
                literal l(b, true);
 | 
						|
                TRACE(nlsat_explain, tout << "adding literal\n"; display(tout, l); tout << "\n";);
 | 
						|
                add_literal(l);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /**
 | 
						|
         * literal can be expressed using a linear ineq_atom
 | 
						|
         */
 | 
						|
        bool mk_linear_root(atom::kind k, var y, unsigned i, poly * p) {            
 | 
						|
            scoped_mpz c(m_pm.m());
 | 
						|
            if (m_pm.degree(p, y) == 1 && m_pm.const_coeff(p, y, 1, c)) {
 | 
						|
                SASSERT(!m_pm.m().is_zero(c));
 | 
						|
                mk_linear_root(k, y, i, p, m_pm.m().is_neg(c));
 | 
						|
                return true;
 | 
						|
            }
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
 | 
						|
 | 
						|
        /**
 | 
						|
           Create pseudo-linear root depending on the sign of the coefficient to y.
 | 
						|
         */
 | 
						|
        bool mk_plinear_root(atom::kind k, var y, unsigned i, poly * p) {
 | 
						|
            if (m_pm.degree(p, y) != 1) {
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
            polynomial_ref c(m_pm);
 | 
						|
            c = m_pm.coeff(p, y, 1);
 | 
						|
            int s = sign(c);
 | 
						|
            if (s == 0) {
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
            ensure_sign(c);
 | 
						|
            mk_linear_root(k, y, i, p, s < 0);                
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
 | 
						|
        /**
 | 
						|
           Encode root conditions for quadratic polynomials.
 | 
						|
           
 | 
						|
           Basically implements Thom's theorem. The roots are characterized by the sign of polynomials and their derivatives.
 | 
						|
 | 
						|
           b^2 - 4ac = 0:
 | 
						|
              - there is only one root, which is -b/2a.
 | 
						|
              - relation to root is a function of the sign of 
 | 
						|
              - 2ax + b
 | 
						|
           b^2 - 4ac > 0:
 | 
						|
              - assert i == 1 or i == 2
 | 
						|
              - relation to root is a function of the signs of:
 | 
						|
                - 2ax + b
 | 
						|
                - ax^2 + bx + c
 | 
						|
         */
 | 
						|
 | 
						|
        bool mk_quadratic_root(atom::kind k, var y, unsigned i, poly * p) {
 | 
						|
            if (m_pm.degree(p, y) != 2) {
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
            if (i != 1 && i != 2) {
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
 | 
						|
            SASSERT(m_assignment.is_assigned(y));
 | 
						|
            polynomial_ref A(m_pm), B(m_pm), C(m_pm), q(m_pm), p_diff(m_pm), yy(m_pm);
 | 
						|
            A = m_pm.coeff(p, y, 2);
 | 
						|
            B = m_pm.coeff(p, y, 1);
 | 
						|
            C = m_pm.coeff(p, y, 0);
 | 
						|
            // TBD throttle based on degree of q?
 | 
						|
            q = (B*B) - (4*A*C);
 | 
						|
            yy = m_pm.mk_polynomial(y);
 | 
						|
            p_diff = 2*A*yy + B;
 | 
						|
            p_diff = m_pm.normalize(p_diff);
 | 
						|
            int sq = ensure_sign(q); 
 | 
						|
            if (sq < 0) {
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
            int sa = ensure_sign(A);
 | 
						|
            if (sa == 0) {
 | 
						|
                q = B*yy + C;
 | 
						|
                return mk_plinear_root(k, y, i, q);
 | 
						|
            } 
 | 
						|
            ensure_sign(p_diff);
 | 
						|
            if (sq > 0) {
 | 
						|
                polynomial_ref pr(p, m_pm);
 | 
						|
                ensure_sign(pr);
 | 
						|
            }
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
 | 
						|
        int ensure_sign(polynomial_ref & p) {
 | 
						|
#if 0
 | 
						|
            polynomial_ref f(m_pm);
 | 
						|
            factor(p, m_factors);
 | 
						|
            m_is_even.reset();
 | 
						|
            unsigned num_factors = m_factors.size();
 | 
						|
            int s = 1;
 | 
						|
            for (unsigned i = 0; i < num_factors; i++) {
 | 
						|
                f = m_factors.get(i);
 | 
						|
                s *= sign(f);
 | 
						|
                m_is_even.push_back(false);
 | 
						|
            } 
 | 
						|
            if (num_factors > 0) {
 | 
						|
                atom::kind k = atom::EQ;
 | 
						|
                if (s == 0) k = atom::EQ;
 | 
						|
                if (s < 0)  k = atom::LT;
 | 
						|
                if (s > 0)  k = atom::GT;
 | 
						|
                bool_var b = m_solver.mk_ineq_atom(k, num_factors, m_factors.c_ptr(), m_is_even.c_ptr());
 | 
						|
                add_literal(literal(b, true));
 | 
						|
            }
 | 
						|
            return s;
 | 
						|
#else
 | 
						|
            int s = sign(p);
 | 
						|
            if (!is_const(p)) {
 | 
						|
                TRACE(nlsat_explain, tout << p << "\n";);
 | 
						|
                add_simple_assumption(s == 0 ? atom::EQ : (s < 0 ? atom::LT : atom::GT), p);
 | 
						|
            }
 | 
						|
            return s;
 | 
						|
#endif
 | 
						|
        }
 | 
						|
 | 
						|
        /**
 | 
						|
           Auxiliary function to linear roots.
 | 
						|
           y > root[1](-2*y - z)
 | 
						|
           y > -z/2
 | 
						|
           y + z/2 > 0
 | 
						|
           2y + z > 0
 | 
						|
           
 | 
						|
         */
 | 
						|
        void mk_linear_root(atom::kind k, var y, unsigned i, poly * p, bool mk_neg) {
 | 
						|
            TRACE(nlsat_explain, display_var(tout, y); m_pm.display(tout << ": ", p, m_solver.display_proc()); tout << "\n");
 | 
						|
            polynomial_ref p_prime(m_pm);
 | 
						|
            p_prime = p;
 | 
						|
            bool lsign = false;
 | 
						|
            if (mk_neg)
 | 
						|
                p_prime = neg(p_prime);
 | 
						|
            p = p_prime.get();
 | 
						|
            switch (k) {
 | 
						|
            case atom::ROOT_EQ: k = atom::EQ; lsign = false; break;
 | 
						|
            case atom::ROOT_LT: k = atom::LT; lsign = false; break;
 | 
						|
            case atom::ROOT_GT: k = atom::GT; lsign = false; break;
 | 
						|
            case atom::ROOT_LE: k = atom::GT; lsign = true; break;
 | 
						|
            case atom::ROOT_GE: k = atom::LT; lsign = true; break;
 | 
						|
            default:
 | 
						|
                UNREACHABLE();
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            add_simple_assumption(k, p, lsign);
 | 
						|
        }
 | 
						|
 | 
						|
        void cac_add_cell_lits(polynomial_ref_vector & ps, var y, polynomial_ref_vector & res) {
 | 
						|
            res.reset();
 | 
						|
            SASSERT(m_assignment.is_assigned(y));
 | 
						|
            bool lower_inf = true;
 | 
						|
            bool upper_inf = true;
 | 
						|
            scoped_anum_vector & roots = m_roots_tmp;
 | 
						|
            scoped_anum lower(m_am);
 | 
						|
            scoped_anum upper(m_am);
 | 
						|
            anum const & y_val = m_assignment.value(y);
 | 
						|
            TRACE(nlsat_explain, tout << "adding literals for "; display_var(tout, y); tout << " -> ";
 | 
						|
                  m_am.display_decimal(tout, y_val); tout << "\n";);
 | 
						|
            polynomial_ref p_lower(m_pm);
 | 
						|
            unsigned i_lower = UINT_MAX;
 | 
						|
            polynomial_ref p_upper(m_pm);
 | 
						|
            unsigned i_upper = UINT_MAX;
 | 
						|
            polynomial_ref p(m_pm);
 | 
						|
            unsigned sz = ps.size();
 | 
						|
            for (unsigned k = 0; k < sz; k++) {
 | 
						|
                p = ps.get(k);
 | 
						|
                if (max_var(p) != y)
 | 
						|
                    continue;
 | 
						|
                roots.reset();
 | 
						|
                // Variable y is assigned in m_assignment. We must temporarily unassign it.
 | 
						|
                // Otherwise, the isolate_roots procedure will assume p is a constant polynomial.
 | 
						|
                m_am.isolate_roots(p, undef_var_assignment(m_assignment, y), roots);
 | 
						|
                unsigned num_roots = roots.size();
 | 
						|
                bool all_lt = true;
 | 
						|
                for (unsigned i = 0; i < num_roots; i++) {
 | 
						|
                    int s = m_am.compare(y_val, roots[i]);
 | 
						|
                    TRACE(nlsat_explain, 
 | 
						|
                        m_am.display_decimal(tout << "comparing root: ", roots[i]); tout << "\n";
 | 
						|
                        m_am.display_decimal(tout << "with y_val:", y_val); 
 | 
						|
                        tout << "\nsign " << s << "\n";
 | 
						|
                        tout << "poly: " << p << "\n";
 | 
						|
                        );
 | 
						|
                    if (s == 0) {
 | 
						|
                        // y_val == roots[i]
 | 
						|
                        // add literal
 | 
						|
                        // ! (y = root_i(p))
 | 
						|
                        add_root_literal(atom::ROOT_EQ, y, i+1, p);
 | 
						|
                        res.push_back(p);
 | 
						|
                        return;
 | 
						|
                    }
 | 
						|
                    else if (s < 0) {
 | 
						|
                        // y_val < roots[i]
 | 
						|
                        if (i > 0) {
 | 
						|
                            // y_val > roots[j]
 | 
						|
                            int j = i - 1;
 | 
						|
                            if (lower_inf || m_am.lt(lower, roots[j])) {
 | 
						|
                                lower_inf = false;
 | 
						|
                                m_am.set(lower, roots[j]);
 | 
						|
                                p_lower = p;
 | 
						|
                                i_lower = j + 1;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                        if (upper_inf || m_am.lt(roots[i], upper)) {
 | 
						|
                            upper_inf = false;
 | 
						|
                            m_am.set(upper, roots[i]);
 | 
						|
                            p_upper = p;
 | 
						|
                            i_upper = i + 1;
 | 
						|
                        }
 | 
						|
                        all_lt = false;
 | 
						|
                        break;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                if (all_lt && num_roots > 0) {
 | 
						|
                    int j = num_roots - 1;
 | 
						|
                    if (lower_inf || m_am.lt(lower, roots[j])) {
 | 
						|
                        lower_inf = false;
 | 
						|
                        m_am.set(lower, roots[j]);
 | 
						|
                        p_lower = p;
 | 
						|
                        i_lower = j + 1;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            if (!lower_inf) {
 | 
						|
                res.push_back(p_lower);
 | 
						|
                add_root_literal(m_full_dimensional ? atom::ROOT_GE : atom::ROOT_GT, y, i_lower, p_lower);
 | 
						|
            }
 | 
						|
            if (!upper_inf) {
 | 
						|
                res.push_back(p_upper);
 | 
						|
                add_root_literal(m_full_dimensional ? atom::ROOT_LE : atom::ROOT_LT, y, i_upper, p_upper);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /**
 | 
						|
           Add one or two literals that specify in which cell of variable y the current interpretation is.
 | 
						|
           One literal is added for the cases: 
 | 
						|
              - y in (-oo, min) where min is the minimal root of the polynomials p2 in ps
 | 
						|
                 We add literal
 | 
						|
                    ! (y < root_1(p2))
 | 
						|
              - y in (max, oo)  where max is the maximal root of the polynomials p1 in ps
 | 
						|
                 We add literal
 | 
						|
                    ! (y > root_k(p1))  where k is the number of real roots of p
 | 
						|
              - y = r           where r is the k-th root of a polynomial p in ps
 | 
						|
                 We add literal
 | 
						|
                    ! (y = root_k(p)) 
 | 
						|
           Two literals are added when
 | 
						|
              - y in (l, u) where (l, u) does not contain any root of polynomials p in ps, and
 | 
						|
                  l is the i-th root of a polynomial p1 in ps, and u is the j-th root of a polynomial p2 in ps.
 | 
						|
                We add literals
 | 
						|
                    ! (y > root_i(p1)) or !(y < root_j(p2))
 | 
						|
        */
 | 
						|
        void add_cell_lits(polynomial_ref_vector & ps, var y) {
 | 
						|
            SASSERT(m_assignment.is_assigned(y));
 | 
						|
            bool lower_inf = true;
 | 
						|
            bool upper_inf = true;
 | 
						|
            scoped_anum_vector & roots = m_roots_tmp;
 | 
						|
            scoped_anum lower(m_am);
 | 
						|
            scoped_anum upper(m_am);
 | 
						|
            anum const & y_val = m_assignment.value(y);
 | 
						|
            TRACE(nlsat_explain, tout << "adding literals for "; display_var(tout, y); tout << " -> ";
 | 
						|
                  m_am.display_decimal(tout, y_val); tout << "\n";);
 | 
						|
            polynomial_ref p_lower(m_pm);
 | 
						|
            unsigned i_lower = UINT_MAX;
 | 
						|
            polynomial_ref p_upper(m_pm);
 | 
						|
            unsigned i_upper = UINT_MAX;
 | 
						|
            polynomial_ref p(m_pm);
 | 
						|
            unsigned sz = ps.size();
 | 
						|
            for (unsigned k = 0; k < sz; k++) {
 | 
						|
                p = ps.get(k);
 | 
						|
                if (max_var(p) != y)
 | 
						|
                    continue;
 | 
						|
                roots.reset();
 | 
						|
                // Variable y is assigned in m_assignment. We must temporarily unassign it.
 | 
						|
                // Otherwise, the isolate_roots procedure will assume p is a constant polynomial.
 | 
						|
                m_am.isolate_roots(p, undef_var_assignment(m_assignment, y), roots);
 | 
						|
                unsigned num_roots = roots.size();
 | 
						|
                bool all_lt = true;
 | 
						|
                for (unsigned i = 0; i < num_roots; i++) {
 | 
						|
                    int s = m_am.compare(y_val, roots[i]);
 | 
						|
                    TRACE(nlsat_explain, 
 | 
						|
                          m_am.display_decimal(tout << "comparing root: ", roots[i]); tout << "\n";
 | 
						|
                          m_am.display_decimal(tout << "with y_val:", y_val); 
 | 
						|
                          tout << "\nsign " << s << "\n";
 | 
						|
                          tout << "poly: " << p << "\n";
 | 
						|
                          );
 | 
						|
                    if (s == 0) {
 | 
						|
                        // y_val == roots[i]
 | 
						|
                        // add literal
 | 
						|
                        // ! (y = root_i(p))
 | 
						|
                        add_root_literal(atom::ROOT_EQ, y, i+1, p);
 | 
						|
                        return;
 | 
						|
                    }
 | 
						|
                    else if (s < 0) {
 | 
						|
                        // y_val < roots[i]
 | 
						|
                        if (i > 0) {
 | 
						|
                            // y_val > roots[j]
 | 
						|
                            int j = i - 1;
 | 
						|
                            if (lower_inf || m_am.lt(lower, roots[j])) {
 | 
						|
                                lower_inf = false;
 | 
						|
                                m_am.set(lower, roots[j]);
 | 
						|
                                p_lower = p;
 | 
						|
                                i_lower = j + 1;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                        if (upper_inf || m_am.lt(roots[i], upper)) {
 | 
						|
                            upper_inf = false;
 | 
						|
                            m_am.set(upper, roots[i]);
 | 
						|
                            p_upper = p;
 | 
						|
                            i_upper = i + 1;
 | 
						|
                        }
 | 
						|
                        all_lt = false;
 | 
						|
                        break;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                if (all_lt && num_roots > 0) {
 | 
						|
                    int j = num_roots - 1;
 | 
						|
                    if (lower_inf || m_am.lt(lower, roots[j])) {
 | 
						|
                        lower_inf = false;
 | 
						|
                        m_am.set(lower, roots[j]);
 | 
						|
                        p_lower = p;
 | 
						|
                        i_lower = j + 1;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            if (!lower_inf) {
 | 
						|
                add_root_literal(m_full_dimensional ? atom::ROOT_GE : atom::ROOT_GT, y, i_lower, p_lower);
 | 
						|
            }
 | 
						|
            if (!upper_inf) {
 | 
						|
                add_root_literal(m_full_dimensional ? atom::ROOT_LE : atom::ROOT_LT, y, i_upper, p_upper);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
 | 
						|
        /**
 | 
						|
           \brief Return true if all polynomials in ps are univariate in x.
 | 
						|
        */
 | 
						|
        bool all_univ(polynomial_ref_vector const & ps, var x) {
 | 
						|
            unsigned sz = ps.size();
 | 
						|
            for (unsigned i = 0; i < sz; i++) {
 | 
						|
                poly * p = ps.get(i);
 | 
						|
                if (max_var(p) != x)
 | 
						|
                    return false;
 | 
						|
                if (!m_pm.is_univariate(p))
 | 
						|
                    return false;
 | 
						|
            }
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
        
 | 
						|
        /**
 | 
						|
           \brief Apply model-based projection operation defined in our paper.
 | 
						|
        */
 | 
						|
 | 
						|
        void project_original(polynomial_ref_vector & ps, var max_x) {
 | 
						|
            if (ps.empty())
 | 
						|
                return;
 | 
						|
            m_todo.reset();
 | 
						|
            for (poly* p : ps) {
 | 
						|
                m_todo.insert(p);
 | 
						|
            }
 | 
						|
            var x = m_todo.extract_max_polys(ps);
 | 
						|
            // Remark: after vanishing coefficients are eliminated, ps may not contain max_x anymore
 | 
						|
            if (x < max_x)
 | 
						|
                add_cell_lits(ps, x);
 | 
						|
            while (true) {
 | 
						|
                if (all_univ(ps, x) && m_todo.empty()) {
 | 
						|
                    m_todo.reset();
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
                TRACE(nlsat_explain,  tout << "project loop, processing var "; display_var(tout, x);
 | 
						|
                      tout << "\npolynomials\n";
 | 
						|
                      display(tout, ps); tout << "\n";);
 | 
						|
                add_lcs(ps, x);
 | 
						|
                psc_discriminant(ps, x);
 | 
						|
                psc_resultant(ps, x);
 | 
						|
                if (m_todo.empty())
 | 
						|
                    break;
 | 
						|
                x = m_todo.extract_max_polys(ps);
 | 
						|
                add_cell_lits(ps, x);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /**
 | 
						|
         * Sample Projection
 | 
						|
         * Reference:
 | 
						|
         * Haokun Li and Bican Xia. 
 | 
						|
         * "Solving Satisfiability of Polynomial Formulas By Sample - Cell Projection"
 | 
						|
         * https://arxiv.org/abs/2003.00409 
 | 
						|
         */
 | 
						|
        void project_cdcac(polynomial_ref_vector & ps, var max_x) {
 | 
						|
            bool first = true;
 | 
						|
            if (ps.empty())
 | 
						|
                return;
 | 
						|
 | 
						|
            m_todo.reset();
 | 
						|
            for (unsigned i = 0; i < ps.size(); i++) {
 | 
						|
                polynomial_ref p(m_pm);
 | 
						|
                p = ps.get(i);
 | 
						|
                insert_fresh_factors_in_todo(p);
 | 
						|
            }
 | 
						|
            // replace ps by the fresh factors
 | 
						|
            ps.reset();
 | 
						|
            for (auto p: m_todo.m_set)
 | 
						|
                ps.push_back(p);
 | 
						|
            
 | 
						|
            var x = m_todo.extract_max_polys(ps);
 | 
						|
            // Remark: after vanishing coefficients are eliminated, ps may not contain max_x anymore
 | 
						|
            
 | 
						|
            polynomial_ref_vector samples(m_pm);
 | 
						|
            if (x < max_x)
 | 
						|
                cac_add_cell_lits(ps, x, samples);
 | 
						|
 | 
						|
            while (true) {
 | 
						|
                if (all_univ(ps, x) && m_todo.empty()) {
 | 
						|
                    m_todo.reset();
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
                TRACE(nlsat_explain, tout << "project loop, processing var "; display_var(tout, x); tout << "\npolynomials\n";
 | 
						|
                      display(tout, ps); tout << "\n";);
 | 
						|
                if (first) { // The first run is special because x is not constrained by the sample, we cannot surround it by the root functions.
 | 
						|
                    // we make the polynomials in ps delinable
 | 
						|
                    add_lcs(ps, x);
 | 
						|
                    psc_discriminant(ps, x);
 | 
						|
                    psc_resultant(ps, x);
 | 
						|
                    first = false;
 | 
						|
                }
 | 
						|
                else {
 | 
						|
                    add_lcs(ps, x);
 | 
						|
                    psc_discriminant(ps, x);
 | 
						|
                    psc_resultant_sample(ps, x, samples);
 | 
						|
                }
 | 
						|
                
 | 
						|
                if (m_todo.empty())
 | 
						|
                    break;
 | 
						|
                x = m_todo.extract_max_polys(ps);
 | 
						|
                cac_add_cell_lits(ps, x, samples);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        void project(polynomial_ref_vector & ps, var max_x) {
 | 
						|
            if (m_cell_sample) {
 | 
						|
                project_cdcac(ps, max_x);
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                project_original(ps, max_x);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        bool check_already_added() const {
 | 
						|
            for (bool b : m_already_added_literal) {
 | 
						|
                (void)b;
 | 
						|
                SASSERT(!b);
 | 
						|
            }
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
 | 
						|
        /*
 | 
						|
           Conflicting core simplification using equations.
 | 
						|
           The idea is to use equations to reduce the complexity of the 
 | 
						|
           conflicting core.
 | 
						|
 | 
						|
           Basic idea:
 | 
						|
           Let l be of the form 
 | 
						|
             h > 0
 | 
						|
           and eq of the form
 | 
						|
             p = 0
 | 
						|
           
 | 
						|
           Using pseudo-division we have that:
 | 
						|
             lc(p)^d h = q p + r
 | 
						|
           where q and r are the pseudo-quotient and pseudo-remainder
 | 
						|
                 d is the integer returned by the pseudo-division algorithm.
 | 
						|
                 lc(p) is the leading coefficient of p
 | 
						|
           If d is even or sign(lc(p)) > 0, we have that
 | 
						|
                sign(h) =  sign(r)
 | 
						|
           Otherwise
 | 
						|
                sign(h) = -sign(r) flipped the sign
 | 
						|
           
 | 
						|
           We have the following rules
 | 
						|
                
 | 
						|
           If
 | 
						|
              (C and h > 0) implies false
 | 
						|
           Then
 | 
						|
              1. (C and p = 0 and lc(p) != 0 and r > 0) implies false   if d is even
 | 
						|
              2. (C and p = 0 and lc(p) > 0  and r > 0) implies false   if lc(p) > 0 and d is odd
 | 
						|
              3. (C and p = 0 and lc(p) < 0  and r < 0) implies false   if lc(p) < 0 and d is odd
 | 
						|
            
 | 
						|
           If
 | 
						|
              (C and h = 0) implies false
 | 
						|
           Then
 | 
						|
              (C and p = 0 and lc(p) != 0 and r = 0) implies false      
 | 
						|
 | 
						|
           If
 | 
						|
              (C and h < 0) implies false
 | 
						|
           Then
 | 
						|
              1. (C and p = 0 and lc(p) != 0 and r < 0) implies false   if d is even
 | 
						|
              2. (C and p = 0 and lc(p) > 0  and r < 0) implies false   if lc(p) > 0 and d is odd
 | 
						|
              3. (C and p = 0 and lc(p) < 0  and r > 0) implies false   if lc(p) < 0 and d is odd
 | 
						|
 | 
						|
           Good cases:
 | 
						|
           - lc(p) is a constant
 | 
						|
           - p = 0 is already in the conflicting core
 | 
						|
           - p = 0 is linear 
 | 
						|
 | 
						|
           We only use equations from the conflicting core and lower stages.
 | 
						|
           Equations from lower stages are automatically added to the lemma.
 | 
						|
        */
 | 
						|
        struct eq_info {
 | 
						|
            poly const *    m_eq;
 | 
						|
            polynomial::var m_x;
 | 
						|
            unsigned        m_k;
 | 
						|
            poly *          m_lc;
 | 
						|
            int             m_lc_sign;
 | 
						|
            bool            m_lc_const;
 | 
						|
            bool            m_lc_add;
 | 
						|
            bool            m_lc_add_ineq;
 | 
						|
            void add_lc_ineq() {
 | 
						|
                m_lc_add = true;
 | 
						|
                m_lc_add_ineq = true;
 | 
						|
            }
 | 
						|
            void add_lc_diseq() {
 | 
						|
                if (!m_lc_add) {
 | 
						|
                    m_lc_add = true;
 | 
						|
                    m_lc_add_ineq = false;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        };
 | 
						|
        void simplify(literal l, eq_info & info, var max, scoped_literal & new_lit) {
 | 
						|
            bool_var b = l.var();
 | 
						|
            atom * a   = m_atoms[b];
 | 
						|
            SASSERT(a);
 | 
						|
            if (a->is_root_atom()) {
 | 
						|
                new_lit = l;
 | 
						|
                return;
 | 
						|
            }
 | 
						|
            ineq_atom * _a = to_ineq_atom(a);
 | 
						|
            unsigned num_factors = _a->size();
 | 
						|
            if (num_factors == 1 && _a->p(0) == info.m_eq) {
 | 
						|
                new_lit = l;
 | 
						|
                return;
 | 
						|
            }
 | 
						|
            TRACE(nlsat_simplify_core, display(tout << "trying to simplify literal\n", l) << "\nusing equation\n";
 | 
						|
                  m_pm.display(tout, info.m_eq, m_solver.display_proc()); tout << "\n";);
 | 
						|
            int  atom_sign = 1;
 | 
						|
            bool modified_lit = false;
 | 
						|
            polynomial_ref_buffer new_factors(m_pm);
 | 
						|
            sbuffer<bool>         new_factors_even;
 | 
						|
            polynomial_ref        new_factor(m_pm);
 | 
						|
            for (unsigned s = 0; s < num_factors; s++) {
 | 
						|
                poly * f = _a->p(s);
 | 
						|
                bool is_even = _a->is_even(s);
 | 
						|
                if (m_pm.degree(f, info.m_x) < info.m_k) {
 | 
						|
                    new_factors.push_back(f);
 | 
						|
                    new_factors_even.push_back(is_even);
 | 
						|
                    continue;
 | 
						|
                }
 | 
						|
                modified_lit = true;
 | 
						|
                unsigned d;
 | 
						|
                m_pm.pseudo_remainder(f, info.m_eq, info.m_x, d, new_factor);
 | 
						|
                polynomial_ref        fact(f, m_pm), eq(const_cast<poly*>(info.m_eq), m_pm);
 | 
						|
                
 | 
						|
                TRACE(nlsat_simplify_core, tout << "d: " << d << " factor " << fact << " eq " << eq << " new factor " << new_factor << "\n";);
 | 
						|
                // adjust sign based on sign of lc of eq
 | 
						|
                if (d % 2 == 1 &&         // d is odd
 | 
						|
                    !is_even   &&         // degree of the factor is odd
 | 
						|
                    info.m_lc_sign < 0) { // lc of the eq is negative 
 | 
						|
                    atom_sign = -atom_sign; // flipped the sign of the current literal
 | 
						|
                    TRACE(nlsat_simplify_core, tout << "odd degree\n";);
 | 
						|
                }
 | 
						|
                if (is_const(new_factor)) {
 | 
						|
                    TRACE(nlsat_simplify_core, tout << "new factor is const\n";);
 | 
						|
                    auto s = sign(new_factor); 
 | 
						|
                    if (is_zero(s)) {
 | 
						|
                        bool atom_val = a->get_kind() == atom::EQ;
 | 
						|
                        bool lit_val  = l.sign() ? !atom_val : atom_val;
 | 
						|
                        new_lit = lit_val ? true_literal : false_literal;
 | 
						|
                        TRACE(nlsat_simplify_core, tout << "zero sign: " << info.m_lc_const << "\n";);
 | 
						|
                        if (!info.m_lc_const) {
 | 
						|
                            // We have essentially shown the current factor must be zero If the leading coefficient is not zero.
 | 
						|
                            // Note that, if the current factor is zero, then the whole polynomial is zero.
 | 
						|
                            // The atom is true if it is an equality, and false otherwise.
 | 
						|
                            // The sign of the leading coefficient (info.m_lc) of info.m_eq doesn't matter.
 | 
						|
                            // However, we have to store the fact it is not zero.
 | 
						|
                            info.add_lc_diseq();
 | 
						|
                        }
 | 
						|
                        return;
 | 
						|
                    }
 | 
						|
                    else {
 | 
						|
                        TRACE(nlsat_simplify_core, tout << "non-zero sign: " << info.m_lc_const << "\n";);
 | 
						|
                        // We have shown the current factor is a constant MODULO the sign of the leading coefficient (of the equation used to rewrite the factor). 
 | 
						|
                        if (!info.m_lc_const) {
 | 
						|
                            // If the leading coefficient is not a constant, we must store this information as an extra assumption.
 | 
						|
                            if (d % 2 == 0 || // d is even
 | 
						|
                                is_even ||  // rewriting a factor of even degree, sign flip doesn't matter
 | 
						|
                                _a->get_kind() == atom::EQ)  // rewriting an equation, sign flip doesn't matter
 | 
						|
                                info.add_lc_diseq();
 | 
						|
                            else
 | 
						|
                                info.add_lc_ineq();
 | 
						|
                        }
 | 
						|
                        if (s < 0 && !is_even) {
 | 
						|
                            atom_sign = -atom_sign;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                else {
 | 
						|
                    new_factors.push_back(new_factor);
 | 
						|
                    new_factors_even.push_back(is_even);
 | 
						|
                    if (!info.m_lc_const) {
 | 
						|
                        if (d % 2 == 0 || // d is even
 | 
						|
                            is_even ||  // rewriting a factor of even degree, sign flip doesn't matter
 | 
						|
                            _a->get_kind() == atom::EQ)  // rewriting an equation, sign flip doesn't matter
 | 
						|
                            info.add_lc_diseq();
 | 
						|
                        else
 | 
						|
                            info.add_lc_ineq();
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
            if (modified_lit) {
 | 
						|
                atom::kind new_k = _a->get_kind();
 | 
						|
                if (atom_sign < 0)
 | 
						|
                    new_k = atom::flip(new_k);
 | 
						|
                new_lit = m_solver.mk_ineq_literal(new_k, new_factors.size(), new_factors.data(), new_factors_even.data());
 | 
						|
                if (l.sign())
 | 
						|
                    new_lit.neg();
 | 
						|
                TRACE(nlsat_simplify_core, tout << "simplified literal:\n"; display(tout, new_lit) << " " << m_solver.value(new_lit) << "\n";);
 | 
						|
                
 | 
						|
                if (max_var(new_lit) < max) {
 | 
						|
                    if (m_solver.value(new_lit) == l_true) {
 | 
						|
                        new_lit = l;
 | 
						|
                    }
 | 
						|
                    else {
 | 
						|
                        add_literal(new_lit);
 | 
						|
                        new_lit = true_literal;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                else {
 | 
						|
                    new_lit = normalize(new_lit, max);
 | 
						|
                    TRACE(nlsat_simplify_core, tout << "simplified literal after normalization:\n"; display(tout, new_lit); tout << " " << m_solver.value(new_lit) << "\n";);
 | 
						|
                }
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                new_lit = l;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        
 | 
						|
        bool simplify(scoped_literal_vector & C, poly const * eq, var max) {
 | 
						|
            bool modified_core = false;
 | 
						|
            eq_info info;
 | 
						|
            info.m_eq = eq;
 | 
						|
            info.m_x  = m_pm.max_var(info.m_eq);
 | 
						|
            info.m_k  = m_pm.degree(eq, info.m_x);
 | 
						|
            polynomial_ref lc_eq(m_pm);
 | 
						|
            lc_eq           = m_pm.coeff(eq, info.m_x, info.m_k);
 | 
						|
            info.m_lc       = lc_eq.get();
 | 
						|
            info.m_lc_sign  = sign(lc_eq);
 | 
						|
            info.m_lc_add   = false;
 | 
						|
            info.m_lc_add_ineq = false;
 | 
						|
            info.m_lc_const = m_pm.is_const(lc_eq);
 | 
						|
            SASSERT(info.m_lc != 0);
 | 
						|
            scoped_literal new_lit(m_solver);
 | 
						|
            unsigned sz   = C.size();
 | 
						|
            unsigned j    = 0;
 | 
						|
            for (unsigned i = 0; i < sz; i++) {
 | 
						|
                literal  l = C[i];
 | 
						|
                new_lit = null_literal;
 | 
						|
                simplify(l, info, max, new_lit);
 | 
						|
                SASSERT(new_lit != null_literal);
 | 
						|
                if (l == new_lit) {
 | 
						|
                    C.set(j, l);
 | 
						|
                    j++;
 | 
						|
                    continue;
 | 
						|
                }
 | 
						|
                modified_core = true;
 | 
						|
                if (new_lit == true_literal)
 | 
						|
                    continue;
 | 
						|
                if (new_lit == false_literal) {
 | 
						|
                    // false literal was created. The assumptions added are sufficient for implying the conflict.
 | 
						|
                    j = 0; // force core to be reset
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
                C.set(j, new_lit);
 | 
						|
                j++;
 | 
						|
            }
 | 
						|
            C.shrink(j);
 | 
						|
            if (info.m_lc_add) {
 | 
						|
                if (info.m_lc_add_ineq)
 | 
						|
                    add_assumption(info.m_lc_sign < 0 ? atom::LT : atom::GT, info.m_lc);
 | 
						|
                else
 | 
						|
                    add_assumption(atom::EQ, info.m_lc, true);
 | 
						|
            }
 | 
						|
            return modified_core;
 | 
						|
        }
 | 
						|
 | 
						|
        /**
 | 
						|
           \brief (try to) Select an equation from C. Returns 0 if C does not contain any equality.
 | 
						|
           This method selects the equation of minimal degree in max.
 | 
						|
        */
 | 
						|
        poly * select_eq(scoped_literal_vector & C, var max) {
 | 
						|
            poly * r       = nullptr;
 | 
						|
            unsigned min_d = UINT_MAX;
 | 
						|
            unsigned sz    = C.size();
 | 
						|
            for (unsigned i = 0; i < sz; i++) {
 | 
						|
                literal l = C[i];
 | 
						|
                if (l.sign())
 | 
						|
                    continue;
 | 
						|
                bool_var b = l.var();
 | 
						|
                atom * a   = m_atoms[b];
 | 
						|
                SASSERT(a != 0);
 | 
						|
                if (a->get_kind() != atom::EQ)
 | 
						|
                    continue;
 | 
						|
                ineq_atom * _a = to_ineq_atom(a);
 | 
						|
                if (_a->size() > 1)
 | 
						|
                    continue;
 | 
						|
                if (_a->is_even(0))
 | 
						|
                    continue;
 | 
						|
                unsigned d = m_pm.degree(_a->p(0), max);
 | 
						|
                SASSERT(d > 0);
 | 
						|
                if (d < min_d) {
 | 
						|
                    r     = _a->p(0);
 | 
						|
                    min_d = d;
 | 
						|
                    if (min_d == 1)
 | 
						|
                        break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            return r;
 | 
						|
        }
 | 
						|
 | 
						|
        /**
 | 
						|
           \brief Select an equation eq s.t.
 | 
						|
               max_var(eq) < max, and
 | 
						|
               it can be used to rewrite a literal in C.
 | 
						|
           Return 0, if such equation was not found.
 | 
						|
        */
 | 
						|
        var_vector m_select_tmp;
 | 
						|
        ineq_atom * select_lower_stage_eq(scoped_literal_vector & C, var max) {
 | 
						|
            var_vector & xs = m_select_tmp;
 | 
						|
            for (literal l : C) {
 | 
						|
                bool_var b = l.var();
 | 
						|
                atom * a = m_atoms[b];
 | 
						|
                if (a->is_root_atom())
 | 
						|
                    continue; // we don't rewrite root atoms
 | 
						|
                ineq_atom * _a = to_ineq_atom(a);
 | 
						|
                unsigned num_factors = _a->size();
 | 
						|
                for (unsigned j = 0; j < num_factors; j++) {
 | 
						|
                    poly * p = _a->p(j);
 | 
						|
                    xs.reset();
 | 
						|
                    m_pm.vars(p, xs);
 | 
						|
                    for (var y : xs) {
 | 
						|
                        if (y >= max)
 | 
						|
                            continue;
 | 
						|
                        atom * eq = m_x2eq[y];
 | 
						|
                        if (eq == nullptr)
 | 
						|
                            continue;
 | 
						|
                        SASSERT(eq->is_ineq_atom());
 | 
						|
                        SASSERT(to_ineq_atom(eq)->size() == 1);
 | 
						|
                        SASSERT(!to_ineq_atom(eq)->is_even(0));
 | 
						|
                        poly * eq_p = to_ineq_atom(eq)->p(0);
 | 
						|
                        SASSERT(m_pm.degree(eq_p, y) > 0);
 | 
						|
                        // TODO: create a parameter
 | 
						|
                        // In the current experiments, using equations with non constant coefficients produces a blowup
 | 
						|
                        if (!m_pm.nonzero_const_coeff(eq_p, y, m_pm.degree(eq_p, y))) 
 | 
						|
                            continue;
 | 
						|
                        if (m_pm.degree(p, y) >= m_pm.degree(eq_p, y))
 | 
						|
                            return to_ineq_atom(eq);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
            return nullptr;
 | 
						|
        }
 | 
						|
        
 | 
						|
        /**
 | 
						|
           \brief Simplify the core using equalities.
 | 
						|
        */
 | 
						|
        void simplify(scoped_literal_vector & C, var max) {
 | 
						|
            // Simplify using equations in the core
 | 
						|
            while (!C.empty()) {
 | 
						|
                poly * eq = select_eq(C, max);
 | 
						|
                if (eq == nullptr)
 | 
						|
                    break;
 | 
						|
                TRACE(nlsat_simplify_core, tout << "using equality for simplifying core\n"; 
 | 
						|
                      m_pm.display(tout, eq, m_solver.display_proc()); tout << "\n";);
 | 
						|
                if (!simplify(C, eq, max))
 | 
						|
                    break;
 | 
						|
            }
 | 
						|
            // Simplify using equations using variables from lower stages.
 | 
						|
            while (!C.empty()) {
 | 
						|
                ineq_atom * eq = select_lower_stage_eq(C, max);
 | 
						|
                if (eq == nullptr)
 | 
						|
                    break;
 | 
						|
                SASSERT(eq->size() == 1);
 | 
						|
                SASSERT(!eq->is_even(0));
 | 
						|
                poly * eq_p = eq->p(0);
 | 
						|
                VERIFY(simplify(C, eq_p, max));
 | 
						|
                // add equation as an assumption                
 | 
						|
                TRACE(nlsat_simpilfy_core, display(tout << "adding equality as assumption ", literal(eq->bvar(), true)); tout << "\n";);
 | 
						|
                add_literal(literal(eq->bvar(), true));
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /**
 | 
						|
           \brief Main procedure. The explain the given unsat core, and store the result in m_result
 | 
						|
        */
 | 
						|
        void main(unsigned num, literal const * ls) {
 | 
						|
            if (num == 0)
 | 
						|
                return;
 | 
						|
            collect_polys(num, ls, m_ps);
 | 
						|
            var max_x = max_var(m_ps);
 | 
						|
            TRACE(nlsat_explain, tout << "polynomials in the conflict:\n"; display(tout, m_ps); tout << "\n";);
 | 
						|
            elim_vanishing(m_ps);
 | 
						|
            TRACE(nlsat_explain, tout << "elim vanishing\n"; display(tout, m_ps); tout << "\n";);
 | 
						|
            project(m_ps, max_x);
 | 
						|
            TRACE(nlsat_explain, tout << "after projection\n"; display(tout, m_ps); tout << "\n";);
 | 
						|
        }
 | 
						|
 | 
						|
        void process2(unsigned num, literal const * ls) {
 | 
						|
            if (m_simplify_cores) {
 | 
						|
                m_core2.reset();
 | 
						|
                m_core2.append(num, ls);
 | 
						|
                var max = max_var(num, ls);
 | 
						|
                SASSERT(max != null_var);
 | 
						|
                normalize(m_core2, max);
 | 
						|
                TRACE(nlsat_explain, display(tout << "core after normalization\n", m_core2) << "\n";);
 | 
						|
                simplify(m_core2, max);
 | 
						|
                TRACE(nlsat_explain, display(tout << "core after simplify\n", m_core2) << "\n";);
 | 
						|
                main(m_core2.size(), m_core2.data());
 | 
						|
                m_core2.reset();
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                main(num, ls);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        
 | 
						|
        // Auxiliary method for core minimization.
 | 
						|
        literal_vector m_min_newtodo;
 | 
						|
        bool minimize_core(literal_vector & todo, literal_vector & core) {
 | 
						|
            SASSERT(!todo.empty());
 | 
						|
            literal_vector & new_todo = m_min_newtodo;
 | 
						|
            new_todo.reset();
 | 
						|
            interval_set_manager & ism = m_evaluator.ism();
 | 
						|
            interval_set_ref r(ism);
 | 
						|
            // Copy the union of the infeasible intervals of core into r.
 | 
						|
            unsigned sz = core.size();
 | 
						|
            for (unsigned i = 0; i < sz; i++) {
 | 
						|
                literal l = core[i];
 | 
						|
                atom * a  = m_atoms[l.var()];
 | 
						|
                SASSERT(a != 0);
 | 
						|
                interval_set_ref inf = m_evaluator.infeasible_intervals(a, l.sign(), nullptr);
 | 
						|
                r = ism.mk_union(inf, r);
 | 
						|
                if (ism.is_full(r)) {
 | 
						|
                    // Done
 | 
						|
                    return false;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            TRACE(nlsat_minimize, tout << "interval set after adding partial core:\n" << r << "\n";);
 | 
						|
            if (todo.size() == 1) {
 | 
						|
                // Done
 | 
						|
                core.push_back(todo[0]);
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
            // Copy the union of the infeasible intervals of todo into r until r becomes full.
 | 
						|
            sz = todo.size();
 | 
						|
            for (unsigned i = 0; i < sz; i++) {
 | 
						|
                literal l = todo[i];
 | 
						|
                atom * a  = m_atoms[l.var()];
 | 
						|
                SASSERT(a != 0);
 | 
						|
                interval_set_ref inf = m_evaluator.infeasible_intervals(a, l.sign(), nullptr);
 | 
						|
                r = ism.mk_union(inf, r);
 | 
						|
                if (ism.is_full(r)) {
 | 
						|
                    // literal l must be in the core
 | 
						|
                    core.push_back(l);
 | 
						|
                    new_todo.swap(todo);
 | 
						|
                    return !todo.empty();
 | 
						|
                }
 | 
						|
                else {
 | 
						|
                    new_todo.push_back(l);
 | 
						|
                }
 | 
						|
            }
 | 
						|
            UNREACHABLE();
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
 | 
						|
        literal_vector m_min_todo;
 | 
						|
        literal_vector m_min_core;
 | 
						|
        void minimize(unsigned num, literal const * ls, scoped_literal_vector & r) {
 | 
						|
            literal_vector & todo = m_min_todo;
 | 
						|
            literal_vector & core = m_min_core;
 | 
						|
            todo.reset(); core.reset();
 | 
						|
            todo.append(num, ls);
 | 
						|
            while (true) {
 | 
						|
                TRACE(nlsat_minimize, tout << "core minimization:\n"; display(tout, todo); tout << "\nCORE:\n"; display(tout, core) << "\n";);
 | 
						|
                if (!minimize_core(todo, core))
 | 
						|
                    break;
 | 
						|
                std::reverse(todo.begin(), todo.end());
 | 
						|
                TRACE(nlsat_minimize, tout << "core minimization:\n"; display(tout, todo); tout << "\nCORE:\n"; display(tout, core) << "\n";);
 | 
						|
                if (!minimize_core(todo, core))
 | 
						|
                    break;
 | 
						|
            }
 | 
						|
            TRACE(nlsat_minimize, tout << "core:\n"; display(tout, core););
 | 
						|
            r.append(core.size(), core.data());
 | 
						|
        }
 | 
						|
 | 
						|
        void process(unsigned num, literal const * ls) {
 | 
						|
            if (m_minimize_cores && num > 1) {
 | 
						|
                m_core1.reset();
 | 
						|
                minimize(num, ls, m_core1);
 | 
						|
                process2(m_core1.size(), m_core1.data());
 | 
						|
                m_core1.reset();
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                process2(num, ls);
 | 
						|
            }
 | 
						|
        }
 | 
						|
      
 | 
						|
        void operator()(unsigned num, literal const * ls, scoped_literal_vector & result) {
 | 
						|
            SASSERT(check_already_added());
 | 
						|
            SASSERT(num > 0);
 | 
						|
            TRACE(nlsat_explain, 
 | 
						|
                  tout << "[explain] set of literals is infeasible in the current interpretation\n"; 
 | 
						|
                  display(tout, num, ls) << "\n";
 | 
						|
                  m_solver.display_assignment(tout);
 | 
						|
                  );
 | 
						|
            m_result = &result;
 | 
						|
            process(num, ls);
 | 
						|
            reset_already_added();
 | 
						|
            m_result = nullptr;
 | 
						|
            TRACE(nlsat_explain, display(tout << "[explain] result\n", result) << "\n";);
 | 
						|
            CASSERT("nlsat", check_already_added());
 | 
						|
        }
 | 
						|
 | 
						|
 | 
						|
        void project(var x, unsigned num, literal const * ls, scoped_literal_vector & result) {
 | 
						|
            
 | 
						|
            m_result = &result;
 | 
						|
            svector<literal> lits;
 | 
						|
            TRACE(nlsat, tout << "project x" << x << "\n"; 
 | 
						|
                  m_solver.display(tout, num, ls);
 | 
						|
                  m_solver.display(tout););
 | 
						|
                  
 | 
						|
#ifdef Z3DEBUG
 | 
						|
            for (unsigned i = 0; i < num; ++i) {
 | 
						|
                SASSERT(m_solver.value(ls[i]) == l_true);
 | 
						|
                atom* a = m_atoms[ls[i].var()];
 | 
						|
                SASSERT(!a || m_evaluator.eval(a, ls[i].sign()));
 | 
						|
            }
 | 
						|
#endif   
 | 
						|
            split_literals(x, num, ls, lits);
 | 
						|
            collect_polys(lits.size(), lits.data(), m_ps);
 | 
						|
            var mx_var = max_var(m_ps);
 | 
						|
            if (!m_ps.empty()) {                
 | 
						|
                svector<var> renaming;
 | 
						|
                if (x != mx_var) {
 | 
						|
                    for (var i = 0; i < m_solver.num_vars(); ++i) {
 | 
						|
                        renaming.push_back(i);
 | 
						|
                    }
 | 
						|
                    std::swap(renaming[x], renaming[mx_var]);
 | 
						|
                    m_solver.reorder(renaming.size(), renaming.data());
 | 
						|
                    TRACE(qe, tout << "x: " << x << " max: " << mx_var << " num_vars: " << m_solver.num_vars() << "\n";
 | 
						|
                          m_solver.display(tout););
 | 
						|
                }
 | 
						|
                elim_vanishing(m_ps);
 | 
						|
                if (m_signed_project) {
 | 
						|
                    signed_project(m_ps, mx_var);
 | 
						|
                }
 | 
						|
                else {
 | 
						|
                    project(m_ps, mx_var);
 | 
						|
                }
 | 
						|
                reset_already_added();
 | 
						|
                m_result = nullptr;
 | 
						|
                if (x != mx_var) {
 | 
						|
                    m_solver.restore_order();
 | 
						|
                }
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                reset_already_added();
 | 
						|
                m_result = nullptr;
 | 
						|
            }
 | 
						|
            for (unsigned i = 0; i < result.size(); ++i) {
 | 
						|
                result.set(i, ~result[i]);
 | 
						|
            }
 | 
						|
#ifdef Z3DEBUG
 | 
						|
            TRACE(nlsat, m_solver.display(tout, result.size(), result.data()) << "\n"; );
 | 
						|
            for (literal l : result) {
 | 
						|
                CTRACE(nlsat, l_true != m_solver.value(l), m_solver.display(tout, l) << " " << m_solver.value(l) << "\n";);
 | 
						|
                SASSERT(l_true == m_solver.value(l));
 | 
						|
            }
 | 
						|
#endif                
 | 
						|
        }
 | 
						|
 | 
						|
        void split_literals(var x, unsigned n, literal const* ls, svector<literal>& lits) {
 | 
						|
            var_vector vs;
 | 
						|
            for (unsigned i = 0; i < n; ++i) {                  
 | 
						|
                vs.reset();
 | 
						|
                m_solver.vars(ls[i], vs);
 | 
						|
                if (vs.contains(x)) {
 | 
						|
                    lits.push_back(ls[i]);
 | 
						|
                }
 | 
						|
                else {
 | 
						|
                    add_literal(~ls[i]);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /**
 | 
						|
           Signed projection. 
 | 
						|
 | 
						|
           Assumptions:
 | 
						|
           - any variable in ps is at most x.
 | 
						|
           - root expressions are satisfied (positive literals)
 | 
						|
           
 | 
						|
           Effect:
 | 
						|
           - if x not in p, then
 | 
						|
              - if sign(p) < 0:   p < 0
 | 
						|
              - if sign(p) = 0:   p = 0
 | 
						|
              - if sign(p) > 0:   p > 0
 | 
						|
           else:
 | 
						|
           - let roots_j be the roots of p_j or roots_j[i] 
 | 
						|
           - let L = { roots_j[i] | M(roots_j[i]) < M(x) }
 | 
						|
           - let U = { roots_j[i] | M(roots_j[i]) > M(x) }
 | 
						|
           - let E = { roots_j[i] | M(roots_j[i]) = M(x) }
 | 
						|
           - let glb in L, s.t. forall l in L . M(glb) >= M(l)
 | 
						|
           - let lub in U, s.t. forall u in U . M(lub) <= M(u)
 | 
						|
           - if root in E, then 
 | 
						|
              - add E x . x = root & x > lb  for lb in L
 | 
						|
              - add E x . x = root & x < ub  for ub in U
 | 
						|
              - add E x . x = root & x = root2  for root2 in E \ { root }
 | 
						|
           - else 
 | 
						|
             - assume |L| <= |U| (other case is symmetric)
 | 
						|
             - add E x . lb <= x & x <= glb for lb in L
 | 
						|
             - add E x . x = glb & x < ub  for ub in U
 | 
						|
         */
 | 
						|
 | 
						|
 | 
						|
        void signed_project(polynomial_ref_vector& ps, var x) {
 | 
						|
            
 | 
						|
            TRACE(nlsat_explain, tout << "Signed projection\n";);
 | 
						|
            polynomial_ref p(m_pm);
 | 
						|
            unsigned eq_index = 0;
 | 
						|
            bool eq_valid = false;
 | 
						|
            unsigned eq_degree = 0;
 | 
						|
            for (unsigned i = 0; i < ps.size(); ++i) {
 | 
						|
                p = ps.get(i);
 | 
						|
                int s = sign(p);
 | 
						|
                if (max_var(p) != x) {
 | 
						|
                    atom::kind k = (s == 0)?(atom::EQ):((s < 0)?(atom::LT):(atom::GT));
 | 
						|
                    add_simple_assumption(k, p, false);
 | 
						|
                    ps[i] = ps.back();
 | 
						|
                    ps.pop_back();
 | 
						|
                    --i;
 | 
						|
                }
 | 
						|
                else if (s == 0) {
 | 
						|
                    if (!eq_valid || degree(p, x) < eq_degree) {
 | 
						|
                        eq_index = i;
 | 
						|
                        eq_valid = true;
 | 
						|
                        eq_degree = degree(p, x);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            if (ps.empty()) {
 | 
						|
                return;
 | 
						|
            }
 | 
						|
 | 
						|
            if (ps.size() == 1) {
 | 
						|
                project_single(x, ps.get(0));
 | 
						|
                return;
 | 
						|
            }
 | 
						|
 | 
						|
            // ax + b = 0, p(x) > 0 -> 
 | 
						|
 | 
						|
            if (eq_valid) {
 | 
						|
                p = ps.get(eq_index);
 | 
						|
                if (degree(p, x) == 1) {
 | 
						|
                    // ax + b = 0
 | 
						|
                    // let d be maximal degree of x in p.
 | 
						|
                    // p(x) -> a^d*p(-b/a), a
 | 
						|
                    // perform virtual substitution with equality.
 | 
						|
                    solve_eq(x, eq_index, ps);
 | 
						|
                }
 | 
						|
                else {
 | 
						|
                    add_zero_assumption(p);
 | 
						|
 | 
						|
                    for (unsigned j = 0; j < ps.size(); ++j) {
 | 
						|
                        if (j == eq_index)
 | 
						|
                            continue;
 | 
						|
                        p = ps.get(j);
 | 
						|
                        int s = sign(p);
 | 
						|
                        atom::kind k = (s == 0)?(atom::EQ):((s < 0)?(atom::LT):(atom::GT));
 | 
						|
                        add_simple_assumption(k, p, false);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                return;
 | 
						|
            }
 | 
						|
            
 | 
						|
            unsigned num_lub = 0, num_glb = 0;
 | 
						|
            unsigned glb_index = 0, lub_index = 0;
 | 
						|
            scoped_anum lub(m_am), glb(m_am), x_val(m_am);
 | 
						|
            x_val = m_assignment.value(x);
 | 
						|
            bool glb_valid = false, lub_valid = false;
 | 
						|
            for (unsigned i = 0; i < ps.size(); ++i) {
 | 
						|
                p = ps.get(i);
 | 
						|
                scoped_anum_vector & roots = m_roots_tmp;
 | 
						|
                roots.reset();
 | 
						|
                m_am.isolate_roots(p, undef_var_assignment(m_assignment, x), roots);
 | 
						|
                for (auto const& r : roots) {
 | 
						|
                    int s = m_am.compare(x_val, r);
 | 
						|
                    SASSERT(s != 0);
 | 
						|
 | 
						|
                    if (s < 0 && (!lub_valid || m_am.lt(r, lub))) {
 | 
						|
                        lub_index = i;
 | 
						|
                        m_am.set(lub, r);
 | 
						|
                        lub_valid = true;
 | 
						|
                    }
 | 
						|
 | 
						|
                    if (s > 0 && (!glb_valid || m_am.lt(glb, r))) {
 | 
						|
                        glb_index = i;
 | 
						|
                        m_am.set(glb, r);
 | 
						|
                        glb_valid = true;
 | 
						|
                    }
 | 
						|
                    if (s < 0) ++num_lub;
 | 
						|
                    if (s > 0) ++num_glb;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            TRACE(nlsat_explain, tout << "glb: " << num_glb << " lub: " << num_lub << "\n" << lub_index << "\n" << glb_index << "\n" << ps << "\n";);
 | 
						|
 | 
						|
            if (num_lub == 0) {
 | 
						|
                project_plus_infinity(x, ps);
 | 
						|
                return;
 | 
						|
            }
 | 
						|
                
 | 
						|
            if (num_glb == 0) {
 | 
						|
                project_minus_infinity(x, ps);
 | 
						|
                return;
 | 
						|
            }
 | 
						|
 | 
						|
            if (num_lub <= num_glb) {
 | 
						|
                glb_index = lub_index;
 | 
						|
            }
 | 
						|
 | 
						|
            project_pairs(x, glb_index, ps);
 | 
						|
        }
 | 
						|
 | 
						|
        void project_plus_infinity(var x, polynomial_ref_vector const& ps) {
 | 
						|
            polynomial_ref p(m_pm), lc(m_pm);
 | 
						|
            for (unsigned i = 0; i < ps.size(); ++i) {
 | 
						|
                p = ps.get(i);
 | 
						|
                unsigned d = degree(p, x);
 | 
						|
                lc = m_pm.coeff(p, x, d);
 | 
						|
                if (!is_const(lc)) {                    
 | 
						|
                    int s = sign(p);
 | 
						|
                    SASSERT(s != 0);
 | 
						|
                    atom::kind k = (s > 0)?(atom::GT):(atom::LT);
 | 
						|
                    add_simple_assumption(k, lc);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        void project_minus_infinity(var x, polynomial_ref_vector const& ps) {
 | 
						|
            polynomial_ref p(m_pm), lc(m_pm);
 | 
						|
            for (unsigned i = 0; i < ps.size(); ++i) {
 | 
						|
                p = ps.get(i);
 | 
						|
                unsigned d = degree(p, x);
 | 
						|
                lc = m_pm.coeff(p, x, d);
 | 
						|
                if (!is_const(lc)) {
 | 
						|
                    int s = sign(p);
 | 
						|
                    TRACE(nlsat_explain, tout << "degree: " << d << " " << lc << " sign: " << s << "\n";);
 | 
						|
                    SASSERT(s != 0);
 | 
						|
                    atom::kind k;
 | 
						|
                    if (s > 0) {
 | 
						|
                        k = (d % 2 == 0)?(atom::GT):(atom::LT);
 | 
						|
                    }
 | 
						|
                    else {
 | 
						|
                        k = (d % 2 == 0)?(atom::LT):(atom::GT);
 | 
						|
                    }
 | 
						|
                    add_simple_assumption(k, lc);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        void project_pairs(var x, unsigned idx, polynomial_ref_vector const& ps) {
 | 
						|
            TRACE(nlsat_explain, tout << "project pairs\n";);
 | 
						|
            polynomial_ref p(m_pm);
 | 
						|
            p = ps.get(idx);
 | 
						|
            for (unsigned i = 0; i < ps.size(); ++i) {
 | 
						|
                if (i != idx) {
 | 
						|
                    project_pair(x, ps.get(i), p);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        void project_pair(var x, polynomial::polynomial* p1, polynomial::polynomial* p2) {
 | 
						|
            m_ps2.reset();
 | 
						|
            m_ps2.push_back(p1);
 | 
						|
            m_ps2.push_back(p2);
 | 
						|
            project(m_ps2, x);
 | 
						|
        }
 | 
						|
 | 
						|
        void project_single(var x, polynomial::polynomial* p) {
 | 
						|
            m_ps2.reset();
 | 
						|
            m_ps2.push_back(p);
 | 
						|
            project(m_ps2, x);
 | 
						|
        }
 | 
						|
 | 
						|
        void solve_eq(var x, unsigned idx, polynomial_ref_vector const& ps) {
 | 
						|
            polynomial_ref p(m_pm), A(m_pm), B(m_pm), C(m_pm), D(m_pm), E(m_pm), q(m_pm), r(m_pm);
 | 
						|
            polynomial_ref_vector As(m_pm), Bs(m_pm);
 | 
						|
            p = ps.get(idx);
 | 
						|
            SASSERT(degree(p, x) == 1);
 | 
						|
            A = m_pm.coeff(p, x, 1);
 | 
						|
            B = m_pm.coeff(p, x, 0);
 | 
						|
            As.push_back(m_pm.mk_const(rational(1)));
 | 
						|
            Bs.push_back(m_pm.mk_const(rational(1)));
 | 
						|
            B = neg(B);
 | 
						|
            TRACE(nlsat_explain, tout << "p: " << p << " A: " << A << " B: " << B << "\n";);
 | 
						|
            // x = B/A
 | 
						|
            for (unsigned i = 0; i < ps.size(); ++i) {
 | 
						|
                if (i != idx) {
 | 
						|
                    q = ps.get(i);
 | 
						|
                    unsigned d = degree(q, x);
 | 
						|
                    D = m_pm.mk_const(rational(1));
 | 
						|
                    E = D;
 | 
						|
                    r = m_pm.mk_zero();
 | 
						|
                    for (unsigned j = As.size(); j <= d; ++j) {
 | 
						|
                        D = As.back(); As.push_back(A * D);
 | 
						|
                        D = Bs.back(); Bs.push_back(B * D);
 | 
						|
                    }
 | 
						|
                    for (unsigned j = 0; j <= d; ++j) {
 | 
						|
                        // A^d*p0 + A^{d-1}*B*p1 + ... + B^j*A^{d-j}*pj + ... + B^d*p_d
 | 
						|
                        C = m_pm.coeff(q, x, j);
 | 
						|
                        TRACE(nlsat_explain, tout << "coeff: q" << j << ": " << C << "\n";);
 | 
						|
                        if (!is_zero(C)) {
 | 
						|
                            D = As.get(d - j);
 | 
						|
                            E = Bs.get(j);
 | 
						|
                            r = r + D*E*C;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                    TRACE(nlsat_explain, tout << "p: " << p << " q: " << q << " r: " << r << "\n";);
 | 
						|
                    ensure_sign(r);
 | 
						|
                }
 | 
						|
                else {
 | 
						|
                    ensure_sign(A);
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
        }
 | 
						|
 | 
						|
        void maximize(var x, unsigned num, literal const * ls, scoped_anum& val, bool& unbounded) {
 | 
						|
            svector<literal> lits;
 | 
						|
            polynomial_ref p(m_pm);
 | 
						|
            split_literals(x, num, ls, lits);
 | 
						|
            collect_polys(lits.size(), lits.data(), m_ps);
 | 
						|
            unbounded = true;
 | 
						|
            scoped_anum x_val(m_am);
 | 
						|
            x_val = m_assignment.value(x);
 | 
						|
            for (unsigned i = 0; i < m_ps.size(); ++i) {
 | 
						|
                p = m_ps.get(i);
 | 
						|
                scoped_anum_vector & roots = m_roots_tmp;
 | 
						|
                roots.reset();
 | 
						|
                m_am.isolate_roots(p, undef_var_assignment(m_assignment, x), roots);
 | 
						|
                for (unsigned j = 0; j < roots.size(); ++j) {
 | 
						|
                    int s = m_am.compare(x_val, roots[j]);
 | 
						|
                    if (s <= 0 && (unbounded || m_am.compare(roots[j], val) <= 0)) {
 | 
						|
                        unbounded = false;
 | 
						|
                        val = roots[j];
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
    };
 | 
						|
 | 
						|
    explain::explain(solver & s, assignment const & x2v, polynomial::cache & u, 
 | 
						|
                     atom_vector const& atoms, atom_vector const& x2eq, evaluator & ev, bool use_cell_sample) {
 | 
						|
        m_imp = alloc(imp, s, x2v, u, atoms, x2eq, ev, use_cell_sample);
 | 
						|
    }
 | 
						|
 | 
						|
    explain::~explain() {
 | 
						|
        dealloc(m_imp);
 | 
						|
    }
 | 
						|
 | 
						|
    void explain::reset() {
 | 
						|
        m_imp->m_core1.reset();
 | 
						|
        m_imp->m_core2.reset();
 | 
						|
    }
 | 
						|
 | 
						|
    void explain::set_simplify_cores(bool f) {
 | 
						|
        m_imp->m_simplify_cores = f;
 | 
						|
    }
 | 
						|
 | 
						|
    void explain::set_full_dimensional(bool f) {
 | 
						|
        m_imp->m_full_dimensional = f;
 | 
						|
    }
 | 
						|
 | 
						|
    void explain::set_minimize_cores(bool f) {
 | 
						|
        m_imp->m_minimize_cores = f;
 | 
						|
    }
 | 
						|
 | 
						|
    void explain::set_factor(bool f) {
 | 
						|
        m_imp->m_factor = f;
 | 
						|
    }
 | 
						|
 | 
						|
    void explain::set_signed_project(bool f) {
 | 
						|
        m_imp->m_signed_project = f;
 | 
						|
    }
 | 
						|
 | 
						|
    void explain::main_operator(unsigned n, literal const * ls, scoped_literal_vector & result) {
 | 
						|
        (*m_imp)(n, ls, result);
 | 
						|
    }
 | 
						|
 | 
						|
    void explain::project(var x, unsigned n, literal const * ls, scoped_literal_vector & result) {
 | 
						|
        m_imp->project(x, n, ls, result);
 | 
						|
    }
 | 
						|
 | 
						|
    void explain::maximize(var x, unsigned n, literal const * ls, scoped_anum& val, bool& unbounded) {
 | 
						|
        m_imp->maximize(x, n, ls, val, unbounded);
 | 
						|
    }
 | 
						|
 | 
						|
    void explain::test_root_literal(atom::kind k, var y, unsigned i, poly* p, scoped_literal_vector & result) {
 | 
						|
        m_imp->test_root_literal(k, y, i, p, result);
 | 
						|
    }
 | 
						|
 | 
						|
};
 | 
						|
#ifdef Z3DEBUG
 | 
						|
#include <iostream>
 | 
						|
void pp(nlsat::explain::imp & ex, unsigned num, nlsat::literal const * ls) {
 | 
						|
    ex.display(std::cout, num, ls);
 | 
						|
}
 | 
						|
void pp(nlsat::explain::imp & ex, nlsat::scoped_literal_vector & ls) {
 | 
						|
    ex.display(std::cout, ls);
 | 
						|
}
 | 
						|
void pp(nlsat::explain::imp & ex, polynomial_ref const & p) {
 | 
						|
    ex.display(std::cout, p);
 | 
						|
    std::cout << std::endl;
 | 
						|
}
 | 
						|
void pp(nlsat::explain::imp & ex, polynomial::polynomial * p) {
 | 
						|
    polynomial_ref _p(p, ex.m_pm);
 | 
						|
    ex.display(std::cout, _p);
 | 
						|
    std::cout << std::endl;
 | 
						|
}
 | 
						|
void pp(nlsat::explain::imp & ex, polynomial_ref_vector const & ps) {
 | 
						|
    ex.display(std::cout, ps);
 | 
						|
}
 | 
						|
void pp_var(nlsat::explain::imp & ex, nlsat::var x) {
 | 
						|
    ex.display(std::cout, x);
 | 
						|
    std::cout << std::endl;
 | 
						|
}
 | 
						|
void pp_lit(nlsat::explain::imp & ex, nlsat::literal l) {
 | 
						|
    ex.display(std::cout, l);
 | 
						|
    std::cout << std::endl;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 |