3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-14 21:08:46 +00:00
z3/src/tactic/portfolio/bounded_int2bv_solver.cpp
Nikolaj Bjorner 08524a2d90 cleanup for warning message
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2017-07-01 11:47:17 -07:00

338 lines
11 KiB
C++

/*++
Copyright (c) 2016 Microsoft Corporation
Module Name:
bounded_int2bv_solver.cpp
Abstract:
This solver identifies bounded integers and rewrites them to bit-vectors.
Author:
Nikolaj Bjorner (nbjorner) 2016-10-23
Notes:
--*/
#include "bounded_int2bv_solver.h"
#include "solver_na2as.h"
#include "tactic.h"
#include "pb2bv_rewriter.h"
#include "filter_model_converter.h"
#include "extension_model_converter.h"
#include "ast_pp.h"
#include "model_smt2_pp.h"
#include "bound_manager.h"
#include "bv2int_rewriter.h"
#include "expr_safe_replace.h"
#include "bv_decl_plugin.h"
#include "arith_decl_plugin.h"
class bounded_int2bv_solver : public solver_na2as {
ast_manager& m;
params_ref m_params;
mutable bv_util m_bv;
mutable arith_util m_arith;
mutable expr_ref_vector m_assertions;
ref<solver> m_solver;
mutable ptr_vector<bound_manager> m_bounds;
mutable func_decl_ref_vector m_bv_fns;
mutable func_decl_ref_vector m_int_fns;
unsigned_vector m_bv_fns_lim;
mutable obj_map<func_decl, func_decl*> m_int2bv;
mutable obj_map<func_decl, func_decl*> m_bv2int;
mutable obj_map<func_decl, rational> m_bv2offset;
mutable bv2int_rewriter_ctx m_rewriter_ctx;
mutable bv2int_rewriter_star m_rewriter;
public:
bounded_int2bv_solver(ast_manager& m, params_ref const& p, solver* s):
solver_na2as(m),
m(m),
m_params(p),
m_bv(m),
m_arith(m),
m_assertions(m),
m_solver(s),
m_bv_fns(m),
m_int_fns(m),
m_rewriter_ctx(m, p),
m_rewriter(m, m_rewriter_ctx)
{
m_bounds.push_back(alloc(bound_manager, m));
}
virtual ~bounded_int2bv_solver() {
while (!m_bounds.empty()) {
dealloc(m_bounds.back());
m_bounds.pop_back();
}
}
virtual solver* translate(ast_manager& m, params_ref const& p) {
return alloc(bounded_int2bv_solver, m, p, m_solver->translate(m, p));
}
virtual void assert_expr(expr * t) {
unsigned i = m_assertions.size();
m_assertions.push_back(t);
while (i < m_assertions.size()) {
t = m_assertions[i].get();
if (m.is_and(t)) {
m_assertions.append(to_app(t)->get_num_args(), to_app(t)->get_args());
m_assertions[i] = m_assertions.back();
m_assertions.pop_back();
}
else {
++i;
}
}
}
virtual void push_core() {
flush_assertions();
m_solver->push();
m_bv_fns_lim.push_back(m_bv_fns.size());
m_bounds.push_back(alloc(bound_manager, m));
}
virtual void pop_core(unsigned n) {
m_assertions.reset();
m_solver->pop(n);
if (n > 0) {
SASSERT(n <= m_bv_fns_lim.size());
unsigned new_sz = m_bv_fns_lim.size() - n;
unsigned lim = m_bv_fns_lim[new_sz];
for (unsigned i = m_int_fns.size(); i > lim; ) {
--i;
m_int2bv.erase(m_int_fns[i].get());
m_bv2int.erase(m_bv_fns[i].get());
m_bv2offset.erase(m_bv_fns[i].get());
}
m_bv_fns_lim.resize(new_sz);
m_bv_fns.resize(lim);
m_int_fns.resize(lim);
}
while (n > 0) {
dealloc(m_bounds.back());
m_bounds.pop_back();
--n;
}
}
virtual lbool check_sat_core(unsigned num_assumptions, expr * const * assumptions) {
flush_assertions();
return m_solver->check_sat(num_assumptions, assumptions);
}
virtual void updt_params(params_ref const & p) { m_solver->updt_params(p); }
virtual void collect_param_descrs(param_descrs & r) { m_solver->collect_param_descrs(r); }
virtual void set_produce_models(bool f) { m_solver->set_produce_models(f); }
virtual void set_progress_callback(progress_callback * callback) { m_solver->set_progress_callback(callback); }
virtual void collect_statistics(statistics & st) const { m_solver->collect_statistics(st); }
virtual void get_unsat_core(ptr_vector<expr> & r) { m_solver->get_unsat_core(r); }
virtual void get_model(model_ref & mdl) {
m_solver->get_model(mdl);
if (mdl) {
extend_model(mdl);
filter_model(mdl);
}
}
virtual proof * get_proof() { return m_solver->get_proof(); }
virtual std::string reason_unknown() const { return m_solver->reason_unknown(); }
virtual void set_reason_unknown(char const* msg) { m_solver->set_reason_unknown(msg); }
virtual void get_labels(svector<symbol> & r) { m_solver->get_labels(r); }
virtual ast_manager& get_manager() const { return m; }
virtual lbool find_mutexes(expr_ref_vector const& vars, vector<expr_ref_vector>& mutexes) { return m_solver->find_mutexes(vars, mutexes); }
virtual lbool get_consequences_core(expr_ref_vector const& asms, expr_ref_vector const& vars, expr_ref_vector& consequences) {
flush_assertions();
expr_ref_vector bvars(m);
for (unsigned i = 0; i < vars.size(); ++i) {
expr* v = vars[i];
func_decl* f;
rational offset;
if (is_app(v) && is_uninterp_const(v) && m_int2bv.find(to_app(v)->get_decl(), f)) {
bvars.push_back(m.mk_const(f));
}
else {
bvars.push_back(v);
}
}
lbool r = m_solver->get_consequences(asms, bvars, consequences);
// translate bit-vector consequences back to integer values
for (unsigned i = 0; i < consequences.size(); ++i) {
expr* a = 0, *b = 0, *u = 0, *v = 0;
func_decl* f;
rational num;
unsigned bvsize;
rational offset;
VERIFY(m.is_implies(consequences[i].get(), a, b));
if (m.is_eq(b, u, v) && is_uninterp_const(u) && m_bv2int.find(to_app(u)->get_decl(), f) && m_bv.is_numeral(v, num, bvsize)) {
SASSERT(num.is_unsigned());
expr_ref head(m);
VERIFY (m_bv2offset.find(to_app(u)->get_decl(), offset));
// f + offset == num
// f == num - offset
head = m.mk_eq(m.mk_const(f), m_arith.mk_numeral(num + offset, true));
consequences[i] = m.mk_implies(a, head);
}
}
return r;
}
private:
void filter_model(model_ref& mdl) const {
if (m_bv_fns.empty()) {
return;
}
filter_model_converter filter(m);
for (unsigned i = 0; i < m_bv_fns.size(); ++i) {
filter.insert(m_bv_fns[i].get());
}
filter(mdl, 0);
}
void extend_model(model_ref& mdl) {
extension_model_converter ext(m);
obj_map<func_decl, func_decl*>::iterator it = m_int2bv.begin(), end = m_int2bv.end();
for (; it != end; ++it) {
rational offset;
VERIFY (m_bv2offset.find(it->m_value, offset));
expr_ref value(m_bv.mk_bv2int(m.mk_const(it->m_value)), m);
if (!offset.is_zero()) {
value = m_arith.mk_add(value, m_arith.mk_numeral(offset, true));
}
TRACE("int2bv", tout << mk_pp(it->m_key, m) << " " << value << "\n";);
ext.insert(it->m_key, value);
}
ext(mdl, 0);
}
void accumulate_sub(expr_safe_replace& sub) const {
for (unsigned i = 0; i < m_bounds.size(); ++i) {
accumulate_sub(sub, *m_bounds[i]);
}
}
void accumulate_sub(expr_safe_replace& sub, bound_manager& bm) const {
bound_manager::iterator it = bm.begin(), end = bm.end();
for (; it != end; ++it) {
expr* e = *it;
rational lo, hi;
bool s1 = false, s2 = false;
SASSERT(is_uninterp_const(e));
func_decl* f = to_app(e)->get_decl();
if (bm.has_lower(e, lo, s1) && bm.has_upper(e, hi, s2) && lo <= hi && !s1 && !s2) {
func_decl* fbv;
rational offset;
if (!m_int2bv.find(f, fbv)) {
rational n = hi - lo + rational::one();
unsigned num_bits = get_num_bits(n);
expr_ref b(m);
b = m.mk_fresh_const("b", m_bv.mk_sort(num_bits));
fbv = to_app(b)->get_decl();
offset = lo;
m_int2bv.insert(f, fbv);
m_bv2int.insert(fbv, f);
m_bv2offset.insert(fbv, offset);
m_bv_fns.push_back(fbv);
m_int_fns.push_back(f);
unsigned shift;
if (!offset.is_zero() && !n.is_power_of_two(shift)) {
m_assertions.push_back(m_bv.mk_ule(b, m_bv.mk_numeral(n-rational::one(), num_bits)));
}
}
else {
VERIFY(m_bv2offset.find(fbv, offset));
}
expr_ref t(m.mk_const(fbv), m);
t = m_bv.mk_bv2int(t);
if (!offset.is_zero()) {
t = m_arith.mk_add(t, m_arith.mk_numeral(offset, true));
}
TRACE("pb", tout << lo << " <= " << hi << " offset: " << offset << "\n"; tout << mk_pp(e, m) << " |-> " << t << "\n";);
sub.insert(e, t);
}
else {
TRACE("pb",
tout << "unprocessed entry: " << mk_pp(e, m) << "\n";
if (bm.has_lower(e, lo, s1)) {
tout << "lower: " << lo << " " << s1 << "\n";
}
if (bm.has_upper(e, hi, s2)) {
tout << "upper: " << hi << " " << s2 << "\n";
});
}
}
}
unsigned get_num_bits(rational const& k) const {
SASSERT(!k.is_neg());
SASSERT(k.is_int());
rational two(2);
rational bound(1);
unsigned num_bits = 1;
while (bound <= k) {
++num_bits;
bound *= two;
}
return num_bits;
}
void flush_assertions() const {
if (m_assertions.empty()) return;
bound_manager& bm = *m_bounds.back();
for (unsigned i = 0; i < m_assertions.size(); ++i) {
bm(m_assertions[i].get());
}
TRACE("int2bv", bm.display(tout););
expr_safe_replace sub(m);
accumulate_sub(sub);
proof_ref proof(m);
expr_ref fml1(m), fml2(m);
if (sub.empty()) {
m_solver->assert_expr(m_assertions);
}
else {
for (unsigned i = 0; i < m_assertions.size(); ++i) {
sub(m_assertions[i].get(), fml1);
m_rewriter(fml1, fml2, proof);
if (m.canceled()) {
m_rewriter.reset();
return;
}
m_solver->assert_expr(fml2);
TRACE("int2bv", tout << fml2 << "\n";);
}
}
m_assertions.reset();
m_rewriter.reset();
}
virtual unsigned get_num_assertions() const {
flush_assertions();
return m_solver->get_num_assertions();
}
virtual expr * get_assertion(unsigned idx) const {
flush_assertions();
return m_solver->get_assertion(idx);
}
};
solver * mk_bounded_int2bv_solver(ast_manager & m, params_ref const & p, solver* s) {
return alloc(bounded_int2bv_solver, m, p, s);
}