3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 17:44:08 +00:00
z3/src/math/lp/dioph_eq.cpp
Lev Nachmanson 2ebb957cc8 enable cuts from proofs
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
2025-02-11 12:23:00 -10:00

747 lines
30 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#include "math/lp/dioph_eq.h"
#include "math/lp/int_solver.h"
#include "math/lp/lar_solver.h"
#include "math/lp/lp_utils.h"
#include <list>
#include <queue>
namespace lp {
// This class represents a term with an added constant number c, in form sum {x_i*a_i} + c.
class dioph_eq::imp {
class term_o:public lar_term {
mpq m_c;
public:
term_o clone() const {
term_o ret;
for (const auto & p: *this) {
ret.add_monomial(p.coeff(), p.j());
}
ret.c() = c();
ret.j() = j();
return ret;
}
const mpq& c() const { return m_c; }
mpq& c() { return m_c; }
term_o():m_c(0) {}
void substitute(const term_o& t, unsigned term_column) {
SASSERT(!t.contains(term_column));
mpq a = get_coeff(term_column); // need to copy it becase the pointer value can be changed during the next loop
for (auto p : t) {
this->add_monomial(a * p.coeff(), p.j());
}
this->c() += a * t.c();
this->m_coeffs.erase(term_column);
}
friend term_o operator*(const mpq& k, const term_o& term) {
term_o r;
for (const auto& p : term)
r.add_monomial(p.coeff()*k, p.j());
r.c() = k*term.c();
return r;
}
#if Z3DEBUG
friend bool operator== (const term_o & a, const term_o& b) {
term_o t = a.clone();
t += mpq(-1)*b;
return t.c() == mpq(0) && t.size() == 0;
}
#endif
term_o& operator += (const term_o& t) {
for (const auto & p: t) {
add_monomial(p.coeff(), p.j());
}
m_c += t.c();
return *this;
}
};
std::ostream& print_S(std::ostream & out) {
out << "S:\n";
for (unsigned i : m_s) {
out << "x" << m_eprime[i].m_e.j() << " ->\n";
print_eprime_entry(i, out);
}
return out;
}
std::ostream& print_lar_term_L(const lar_term & t, std::ostream & out) const {
return print_linear_combination_customized(t.coeffs_as_vector(), [](int j)->std::string {return "y"+std::to_string(j);}, out );
}
unsigned from_fresh(unsigned j) const {
if (is_fresh_var(j))
return UINT_MAX - j;
return j;
}
std::ostream& print_term_o(term_o const& term, std::ostream& out) const {
if (term.size() == 0 && term.c().is_zero()) {
out << "0";
return out;
}
bool first = true;
for (const auto p : term) {
mpq val = p.coeff();
if (first) {
first = false;
}
else if (is_pos(val)) {
out << " + ";
}
else {
out << " - ";
val = -val;
}
if (val == -numeric_traits<mpq>::one())
out << " - ";
else if (val != numeric_traits<mpq>::one())
out << T_to_string(val);
out << "x" << from_fresh(p.j());
}
if (!term.c().is_zero()) {
if (term.c().is_pos())
out << " + " << term.c();
else
out << " - " << -term.c();
}
return out;
}
/*
An annotated state is a triple ⟨E, λ, σ⟩, where E is a set of pairs ⟨e, ℓ⟩ in which
e is an equation and is a linear combination of variables from L
*/
struct eprime_pair {
term_o m_e;
// we keep the dependency of the equation in m_l
// a more expensive alternative is to keep the history term of m_e : originally m_l is i, the index of row m_e was constructed from
u_dependency *m_l;
};
vector<eprime_pair> m_eprime;
/* let σ be a partial mapping from variables in L united with X to linear combinations
of variables in X and of integer constants showing the substitutions
*/
u_map<term_o> m_sigma;
public:
int_solver& lia;
lar_solver& lra;
explanation m_infeas_explanation;
// we start assigning with UINT_MAX and go down, print it as l(UINT_MAX - m_last_fresh_x_var)
unsigned m_last_fresh_x_var = UINT_MAX;
bool m_report_branch = false;
// set F
std::list<unsigned> m_f; // F = {λ(t):t in m_f}
// set S
std::list<unsigned> m_s; // S = {λ(t): t in m_s}
vector<unsigned> m_k2s; // k is substituted by using equation in m_eprime[m_k2s[k]]
unsigned m_conflict_index = -1; // m_eprime[m_conflict_index] gives the conflict
imp(int_solver& lia, lar_solver& lra): lia(lia), lra(lra) {}
term_o row_to_term(const row_strip<mpq>& row) const {
const auto lcm = get_denominators_lcm(row);
term_o t;
for (const auto & p: row)
if (lia.is_fixed(p.var()))
t.c() += p.coeff()*lia.lower_bound(p.var()).x;
else
t.add_monomial(lcm * p.coeff(), p.var());
t.c() *= lcm;
return t;
}
void init() {
m_report_branch = false;
unsigned n_of_rows = lra.A_r().row_count();
m_k2s.clear();
m_k2s.resize(lra.column_count(), -1);
m_conflict_index = -1;
m_infeas_explanation.clear();
lia.get_term().clear();
auto all_vars_are_int = [this](const auto& row) {
for (const auto& p : row) {
if (!lia.column_is_int(p.var())) {
return false;
}
}
return true;
};
for (unsigned i = 0; i < n_of_rows; i++) {
auto & row = lra.get_row(i);
TRACE("dioph_eq", tout << "row "<< i <<":"; lia.display_row_info(tout, i) << "\n";);
unsigned basic_var = lra.r_basis()[i];
if (!lia.column_is_int(basic_var)) continue;
if (!all_vars_are_int(row)) continue;
term_o t = row_to_term(row);
TRACE("dioph_eq", tout << "row = "; lra.print_row(row, tout) << std::endl;);
if (t.size() == 0) {
SASSERT(t.c().is_zero());
continue;
}
// eprime_pair pair = {t, lar_term(i)};
eprime_pair pair = {t, get_dep_from_row(row)};
m_f.push_back(static_cast<unsigned>(m_f.size()));
m_eprime.push_back(pair);
TRACE("dioph_eq", print_eprime_entry(static_cast<unsigned>(m_f.size()) - 1, tout););
}
}
// look only at the fixed columns
u_dependency * get_dep_from_row(const row_strip<mpq>& row) {
u_dependency* dep = nullptr;
for (const auto & p: row) {
if (!lia.is_fixed(p.var())) continue;
u_dependency * bound_dep = lra.get_bound_constraint_witnesses_for_column(p.var());
dep = lra.mk_join(dep, bound_dep);
}
return dep;
}
mpq gcd_of_coeffs(const term_o& t) {
mpq g(0);
for (const auto & p : t) {
if (g.is_zero())
g = abs(p.coeff());
else
g = gcd(g, p.coeff());
if (g.is_one()) break;
}
return g;
}
std::ostream & print_dep(std::ostream& out, u_dependency* dep) {
explanation ex(lra.flatten(dep));
return lra.print_expl(out, ex);
}
// returns true if no conflict is found and false otherwise
// this function devides all cooficients, and the free constant, of the ep.m_e by the gcd of all coefficients,
// it is needed by the next steps
bool normalize_e_by_gcd(eprime_pair& ep) {
TRACE("dioph_eq", print_term_o(ep.m_e, tout << "m_e:") << std::endl;
print_dep(tout << "m_l:", ep.m_l) << std::endl;
);
mpq g = gcd_of_coeffs(ep.m_e);
if (g.is_zero()) {
SASSERT(ep.m_e.c().is_zero());
return true;
}
if (g.is_one())
return true;
TRACE("dioph_eq", tout << "g:" << g << std::endl;);
mpq new_c = ep.m_e.c() / g;
if (!new_c.is_int()) {
TRACE("dioph_eq",
print_term_o(ep.m_e, tout << "conflict m_e:") << std::endl;
tout << "g:" << g << std::endl;
print_dep(tout << "m_l:", ep.m_l) << std::endl;
tout << "S:\n";
for (const auto& t : m_sigma) {
tout << "x" << from_fresh(t.m_key) << " -> ";
print_term_o(t.m_value, tout) << std::endl;
}
);
/* We have ep.m_e/g = 0, or sum((coff_i/g)*x_i) + new_c = 0,
or sum((coeff_i/g)*x_i) = -new_c, where new_c is not an integer
Then sum((coeff_i/g)*x_i) <= floor(-new_c) or sum((coeff_i/g)*x_i) >= ceil(-new_c)
*/
if (lra.settings().stats().m_dio_conflicts % lra.settings().dio_cut_from_proof_period() == 0) {
// prepare int_solver for reporting
lar_term& t = lia.get_term();
for (auto& p: ep.m_e) {
t.add_monomial(p.coeff()/g, p.j());
}
lia.offset() = floor(-new_c);
lia.is_upper() = true;
m_report_branch = true;
TRACE("dioph_eq", tout << "prepare branch:"; print_lar_term_L(t, tout) << " <= " << lia.offset() << std::endl;);
}
return false;
} else {
for (auto& p: ep.m_e.coeffs()) {
p.m_value /= g;
}
ep.m_e.c() = new_c;
// ep.m_l *= (1/g);
TRACE("dioph_eq",
tout << "ep_m_e:"; print_term_o(ep.m_e, tout) << std::endl;
tout << "ep.ml:";
print_dep(tout, ep.m_l) << std::endl;);
}
return true;
}
// returns true if no conflict is found and false otherwise
bool normalize_by_gcd() {
for (unsigned l: m_f) {
if (!normalize_e_by_gcd(m_eprime[l])) {
m_conflict_index = l;
return false;
}
}
return true;
}
void init_term_from_constraint(term_o& t, const lar_base_constraint& c) {
for (const auto& p: c.coeffs()) {
t.add_monomial(p.first, p.second);
}
t.c() = - c.rhs();
}
void subs_k(const eprime_pair& e, unsigned k, term_o& t, std::queue<unsigned> & q) {
SASSERT (t.contains(k));
mpq coeff = t.get_coeff(k); // need to copy it because the pointer value can be changed during the next loop
const mpq& k_coeff_in_e = e.m_e.get_coeff(k);
bool is_one = k_coeff_in_e.is_one();
SASSERT(is_one || k_coeff_in_e.is_minus_one());
t.erase_var(k);
if (is_one) {
coeff = -coeff;
}
for (const auto& p: e.m_e) {
if (p.j() == k) continue;
unsigned j = p.j();
if (is_fresh_var(j)) {
j = lra.add_var(p.j(), true);
m_k2s.push_back(null_lpvar);
}
t.add_monomial(coeff*p.coeff(), j);
}
t.c() += coeff*e.m_e.c();
for (const auto& p: t) {
if (m_k2s[p.j()] != null_lpvar)
q.push(p.j());
}
}
void process_q_with_S(std::queue<unsigned> &q, term_o& t, u_dependency* &dep) {
TRACE("dioph_eq_dep", tout << "dep:"; print_dep(tout, dep) << std::endl;);
while (!q.empty()) {
unsigned k = q.front();
q.pop();
const eprime_pair& e = m_eprime[m_k2s[k]];
if (!t.contains(k)) {
continue;
}
TRACE("dioph_eq", tout << "k:" << k << " in: "; print_eprime_entry(m_k2s[k], tout) << std::endl;);
subs_k(e, k, t, q);
dep = lra.mk_join(dep, e.m_l);
TRACE("dioph_eq", tout << "substituted t:"; print_term_o(t, tout) << std::endl;
tout << "\ndep:"; print_dep(tout, dep) << std::endl;);
}
}
lia_move tighten_with_S() {
// Following the pattern of int_cube, but do not push/pop the state. Instead, we keep the new bounds.
int change = 0;
for (unsigned j = 0; j < lra.column_count(); j++) {
if (!lra.column_has_term(j) || lra.column_is_free(j) ||
lra.column_is_fixed(j) || !lia.column_is_int(j)) continue;
if (tighten_bounds_for_column(j)) {
change++;
}
if (!m_infeas_explanation.empty()) {
return lia_move::conflict;
}
}
if (!change)
return lia_move::undef;
auto st = lra.find_feasible_solution();
if (st != lp::lp_status::FEASIBLE && st != lp::lp_status::OPTIMAL) {
lra.get_infeasibility_explanation(m_infeas_explanation);
return lia_move::conflict;
}
return lia_move::undef;
}
// j is the index of the column
// return true if there is a change
bool tighten_bounds_for_column(unsigned j) {
TRACE("dioph_eq", tout << "j:"; tout << j << std::endl;);
const lar_term& lar_t = lra.get_term(j);
TRACE("dioph_eq", tout << "tighten_term_for_S: "; print_lar_term_L(lar_t, tout) << std::endl;);
// create a copy: t is a copy of lar_t
term_o t;
std::queue<unsigned> q;
for (const auto& p: lar_t) {
if (m_k2s[p.j()] != null_lpvar)
q.push(p.j());
t.add_monomial(p.coeff(), p.j());
}
u_dependency * dep = nullptr;
TRACE("dioph_eq", tout << "t:"; print_term_o(t, tout) << std::endl;
/*tout << "dep:"; print_dep(tout, dep) << std::endl;*/);
process_q_with_S(q, t, dep);
TRACE("dioph_eq", tout << "after process_q_with_S\n t:"; print_term_o(t, tout) << std::endl;
tout << "dep:"; print_dep(tout, dep) << std::endl;);
mpq g = gcd_of_coeffs(t);
if (g.is_one()) {
TRACE("dioph_eq", tout << "g is one" << std::endl;);
return false;
} else if (g.is_zero()) {
handle_constant_term(t, j, dep);
if (!m_infeas_explanation.empty())
return true;
return false;
}
return tighten_bounds_for_term(t, g, j, dep);
}
void handle_constant_term(term_o& t, unsigned j, u_dependency* dep) {
if (t.c().is_zero()) {
return;
}
mpq rs;
bool is_strict;
u_dependency *b_dep = nullptr;
if (lra.has_upper_bound(j, b_dep, rs, is_strict)) {
if (t.c() > rs || is_strict && t.c() == rs) {
for (const auto& p: lra.flatten(dep)) {
m_infeas_explanation.push_back(p);
}
for (const auto& p: lra.flatten(b_dep)) {
m_infeas_explanation.push_back(p);
}
return;
}
}
if (lra.has_lower_bound(j, b_dep, rs, is_strict)) {
if (t.c() < rs || is_strict && t.c() == rs) {
for (const auto& p: lra.flatten(dep)) {
m_infeas_explanation.push_back(p);
}
for (const auto& p: lra.flatten(b_dep)) {
m_infeas_explanation.push_back(p);
}
}
}
}
// returns true if there is a change
// dep comes from the substitution with S
bool tighten_bounds_for_term(term_o& t, const mpq& g, unsigned j, u_dependency* dep) {
mpq rs;
bool is_strict;
bool change = false;
u_dependency *b_dep = nullptr;
SASSERT(!g.is_zero());
if (lra.has_upper_bound(j, b_dep, rs, is_strict)) {
TRACE("dioph_eq", tout << "tighten upper bound for x" << j << " with rs:" << rs << std::endl;);
rs = (rs - t.c()) / g;
TRACE("dioph_eq", tout << "tighten upper bound for x" << j << " with rs:" << rs << std::endl;);
if (!rs.is_int()) {
tighten_bound_for_term(t, g, j, lra.mk_join(dep, b_dep), rs, true);
change = true;
}
}
if (lra.has_lower_bound(j, b_dep, rs, is_strict)) {
TRACE("dioph_eq", tout << "tighten lower bound for x" << j << " with rs:" << rs << std::endl;);
rs = (rs - t.c()) / g;
TRACE("dioph_eq", tout << "tighten lower bound for x" << j << " with rs:" << rs << std::endl;);
if (!rs.is_int()) {
tighten_bound_for_term(t, g, j, lra.mk_join(b_dep, dep), rs, false);
change = true;
}
}
return change;
}
void tighten_bound_for_term(term_o& t,
const mpq& g, unsigned j, u_dependency* dep, const mpq & ub, bool upper) {
// ub = (upper_bound(j) - t.c())/g.
// we have x[j] = t = g*t_+ t.c() <= upper_bound(j), then
// t_ <= floor((upper_bound(j) - t.c())/g) = floor(ub)
//
// so xj = g*t_+t.c() <= g*floor(ub) + t.c() is new upper bound
// <= can be replaced with >= for lower bounds, with ceil instead of floor
mpq bound = g * (upper?floor(ub):ceil(ub))+t.c();
TRACE("dioph_eq", tout << "upper:" << upper << std::endl;
tout << "new " << (upper? "upper":"lower" ) << "bound:" << bound << std::endl;);
dep = lra.mk_join(dep, upper? lra.get_column_upper_bound_witness(j): lra.get_column_lower_bound_witness(j) );
SASSERT(upper && bound <= lra.get_upper_bound(j).x || !upper && bound >= lra.get_lower_bound(j).x);
lconstraint_kind kind = upper? lconstraint_kind::LE: lconstraint_kind::GE;
lra.update_column_type_and_bound(j, kind, bound, dep);
TRACE("dioph_eq",
tout << "new " << (upper? "upper":"lower" ) << "bound:" << bound << std::endl;
tout << "bound_dep:\n";print_dep(tout, dep) << std::endl;);
}
lia_move check() {
init();
while(m_f.size()) {
if (!normalize_by_gcd()) {
lra.settings().stats().m_dio_conflicts++;
if (m_report_branch) {
m_report_branch = false;
return lia_move::branch;
}
return lia_move::conflict;
}
rewrite_eqs();
}
TRACE("dioph_eq", print_S(tout););
lia_move ret = tighten_with_S();
if (ret == lia_move::conflict) {
lra.settings().stats().m_dio_conflicts++;
return lia_move::conflict;
}
return lia_move::undef;
}
std::list<unsigned>::iterator pick_eh() {
return m_f.begin(); // TODO: make a smarter joice
}
void add_operator(lar_term& t, const mpq& k, const lar_term& l) {
for (const auto& p: l) {
t.add_monomial(k*p.coeff(), p.j());
}
}
void substitute_var_on_f(unsigned k, int k_sign, const term_o& k_subst, u_dependency * dep, unsigned index_to_avoid) {
TRACE("dioph_eq", print_term_o(k_subst, tout<< "x" << k<< " -> ") << std::endl; tout << "dep:"; print_dep(tout, dep) << std::endl;);
for (unsigned e_index: m_f) {
if (e_index == index_to_avoid) continue;
term_o& e = m_eprime[e_index].m_e;
if (!e.contains(k)) continue;
const mpq& k_coeff = e.get_coeff(k);
TRACE("dioph_eq", print_eprime_entry(e_index, tout << "before:") << std::endl;
tout << "k_coeff:" << k_coeff << std::endl;);
/*
if (!l_term.is_empty()) {
if (k_sign == 1)
add_operator(m_eprime[e_index].m_l, -k_coeff, l_term);
else
add_operator(m_eprime[e_index].m_l, k_coeff, l_term);
}
*/
m_eprime[e_index].m_l = lra.mk_join(dep, m_eprime[e_index].m_l);
e.substitute(k_subst, k);
TRACE("dioph_eq", print_eprime_entry(e_index, tout << "after :") << std::endl;);
}
}
std::tuple<mpq, unsigned, int> find_minimal_abs_coeff(const term_o& eh) const {
bool first = true, first_fresh = true;
mpq ahk, ahk_fresh;
unsigned k, k_fresh;
int k_sign, k_sign_fresh;
mpq t;
for (const auto& p : eh) {
t = abs(p.coeff());
if (first_fresh || t < ahk_fresh) {
ahk_fresh = t;
k_sign_fresh = p.coeff().is_pos() ? 1 : -1;
k_fresh = p.j();
first_fresh = false;
} else if (first || t < ahk) {
ahk = t;
k_sign = p.coeff().is_pos() ? 1 : -1;
k = p.j();
first = false;
if (ahk.is_one())
break;
}
}
if (first_fresh) // did not find any fresh variables
return std::make_tuple(ahk, k, k_sign);
if (first) // only fresh vars
return std::make_tuple(ahk_fresh, k_fresh, k_sign_fresh);
SASSERT(!first && !first_fresh);
if (ahk <= ahk_fresh) {
return std::make_tuple(ahk, k, k_sign);
}
return std::make_tuple(ahk_fresh, k_fresh, k_sign_fresh);
}
term_o get_term_to_subst(const term_o& eh, unsigned k, int k_sign) {
term_o t;
for (const auto & p: eh) {
if (p.j() == k) continue;
t.add_monomial(-k_sign*p.coeff(), p.j());
}
t.c() = -k_sign*eh.c();
TRACE("dioph_eq", tout << "subst_term:"; print_term_o(t, tout) << std::endl;);
return t;
}
void eliminate_var_in_f(eprime_pair& e_pair, unsigned k, int k_sign) {
term_o t = get_term_to_subst(e_pair.m_e, k, k_sign);
substitute_var_on_f(k, k_sign, t, e_pair.m_l, -1) ; // -1 is for the index to ignore
}
// k is the variable to substitute
void fresh_var_step(unsigned e_index, unsigned k) {
eprime_pair & e_pair = m_eprime[e_index];
// step 7 from the paper
auto & eh = e_pair.m_e;
// xt is the fresh variable
unsigned xt = m_last_fresh_x_var--;
TRACE("dioph_eq", tout << "introduce fresh xt:" << "~x"<< fresh_index(xt) << std::endl;
tout << "eh:"; print_term_o(eh,tout) << std::endl;);
/* Let eh = sum (a_i*x_i) + c
For each i != k, let a_i = a_qi*ahk + a_ri, and let c = c_q * ahk + c_r
eh = ahk * (x_k + sum {a_qi*x_i) + c_q | i != k }) + sum {a_ri*x_i | i != k} + c_r = 0
xt = x_k + sum {a_qi*x_i) + c_q | i != k }, it will be xt_term
Then x_k -> - sum {a_qi*x_i) + c_q | i != k } + xt, it will be subs_k
eh = ahk*xt + ...
*/
term_o xt_term;
term_o k_subs;
// copy it aside
const mpq ahk = eh.get_coeff(k);
mpq r, q = machine_div_rem(eh.c(), ahk, r);
xt_term.add_var(k);
xt_term.c() = q;
xt_term.add_monomial(mpq(-1), xt);
k_subs.add_var(xt);
k_subs.c() = - q;
term_o et; //et is the elimination k from eh, which is an optimization
et.add_monomial(ahk, xt);
et.c() = r;
for (const auto & p: eh) {
if (p.j() == k) continue;
q = machine_div_rem(p.coeff(), ahk, r);
xt_term.add_monomial(q, p.j());
k_subs.add_monomial(-q, p.j());
et.add_monomial(r, p.j());
}
m_eprime[e_index].m_e = et;
// eprime_pair xt_entry = {xt_term, lar_term()}; // 0 for m_l field
eprime_pair xt_entry = {xt_term, nullptr}; // nullptr for the dependency
m_eprime.push_back(xt_entry);
TRACE("dioph_eq", tout << "xt_term:"; print_term_o(xt_term, tout) << std::endl;
tout << "k_subs:"; print_term_o(k_subs, tout) << std::endl;
print_eprime_entry(m_eprime.size()-1, tout););
substitute_var_on_f(k, 1, k_subs, xt_entry.m_l, e_index);
// the term to eliminate the fresh variable
term_o xt_subs = xt_term.clone();
xt_subs.add_monomial(mpq(1), xt);
TRACE("dioph_eq", tout << "xt_subs: x~"<< fresh_index(xt) << " -> "; print_term_o(xt_subs, tout) << std::endl;);
m_sigma.insert(xt, xt_subs);
}
std::ostream& print_eprime_entry(unsigned i, std::ostream& out) {
out << "m_eprime[" << i << "]:{\n";
print_term_o(m_eprime[i].m_e, out << "\tm_e:") << "," << std::endl;
// print_dep(out<< "\tm_l:", m_eprime[i].m_l) << "\n}"<< std::endl;
return out;
}
// k is the index of the index of the variable with the coefficient +-1 that is being substituted
void move_from_f_to_s(unsigned k, std::list<unsigned>::iterator it) {
m_s.push_back(*it);
if (!is_fresh_var(k))
m_k2s[k] = *it;
m_f.erase(it);
}
// this is the step 6 or 7 of the algorithm
void rewrite_eqs() {
auto eh_it = pick_eh();
auto& eprime_entry = m_eprime[*eh_it];
TRACE("dioph_eq", print_eprime_entry(*eh_it, tout););
term_o& eh = eprime_entry.m_e;
auto [ahk, k, k_sign] = find_minimal_abs_coeff(eh);
TRACE("dioph_eq", tout << "ahk:" << ahk << ", k:" << k << ", k_sign:" << k_sign << std::endl;);
if (ahk.is_one()) {
eprime_entry.m_e.j() = k;
TRACE("dioph_eq", tout << "push to S:\n"; print_eprime_entry(*eh_it, tout););
move_from_f_to_s(k, eh_it);
eliminate_var_in_f(eprime_entry, k , k_sign);
} else {
fresh_var_step(*eh_it, k);
}
}
void explain(explanation& ex) {
if (m_conflict_index == UINT_MAX) {
SASSERT(!(lra.get_status() == lp_status::FEASIBLE || lra.get_status() == lp_status::OPTIMAL));
for (auto ci: m_infeas_explanation) {
ex.push_back(ci.ci());
}
return;
}
SASSERT(ex.empty());
TRACE("dioph_eq", tout << "conflict:"; print_eprime_entry(m_conflict_index, tout) << std::endl;);
auto & ep = m_eprime[m_conflict_index];
u_dependency* dep = nullptr;
/*
for (const auto & pl : ep.m_l) {
unsigned row_index = pl.j();
for (const auto & p : lra.get_row(row_index))
if (lra.column_is_fixed(p.var()))
lra.explain_fixed_column(p.var(), ex);
}
*/
for (auto ci: lra.flatten(ep.m_l)) {
ex.push_back(ci);
}
TRACE("dioph_eq", lra.print_expl(tout, ex););
}
unsigned fresh_index(unsigned j) const {return UINT_MAX - j;}
void remove_fresh_variables(term_o& t) {
std::queue<unsigned> q;
for (auto p : t) {
if (is_fresh_var(p.j())) {
q.push(p.j());
}
}
CTRACE("dioph_eq_fresh", q.empty() == false, print_term_o(t, tout)<< std::endl);
while (!q.empty()) {
unsigned j = q.front();
q.pop();
const term_o& sub_t = m_sigma.find(j);
TRACE("dioph_eq_fresh", tout << "x~" << fresh_index(j) << "; sub_t:"; print_term_o(sub_t, tout) << std::endl;);
t.substitute(sub_t, j);
TRACE("dioph_eq_fresh", tout << "sub_t:"; print_term_o(sub_t, tout) << std::endl;
tout << "after sub:";print_term_o(t, tout) << std::endl;);
for (auto p : sub_t)
if (is_fresh_var(p.j()) && t.contains(p.j()))
q.push(p.j());
}
}
bool is_fresh_var(unsigned j) const {
return j > lra.column_count();
}
};
// Constructor definition
dioph_eq::dioph_eq(int_solver& lia): lia(lia) {
m_imp = alloc(imp, lia, lia.lra);
}
dioph_eq::~dioph_eq() {
dealloc(m_imp);
}
lia_move dioph_eq::check() {
return m_imp->check();
}
void dioph_eq::explain(lp::explanation& ex) {
m_imp->explain(ex);
}
}