3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-27 19:05:51 +00:00
z3/src/math/lp/nla_tangent_lemmas.cpp
Lev Nachmanson 33cbd29ed0 mv util/lp to math/lp
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
2020-01-28 10:04:21 -08:00

181 lines
6.3 KiB
C++

/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
<name>
Abstract:
<abstract>
Author:
Nikolaj Bjorner (nbjorner)
Lev Nachmanson (levnach)
Revision History:
--*/
#include "math/lp/nla_tangent_lemmas.h"
#include "math/lp/nla_core.h"
namespace nla {
template <typename T> rational tangents::val(T const& t) const { return m_core->val(t); }
tangents::tangents(core * c) : common(c) {}
std::ostream& tangents::print_tangent_domain(const point &a, const point &b, std::ostream& out) const {
return out << "(" << a << ", " << b << ")";
}
void tangents::tangent_lemma() {
if (!c().m_settings.run_tangents()) {
TRACE("nla_solver", tout << "not generating tangent lemmas\n";);
return;
}
factorization bf(nullptr);
const monomial* m;
if (c().find_bfc_to_refine(m, bf)) {
tangent_lemma_bf(*m, bf);
}
}
void tangents::generate_explanations_of_tang_lemma(const monomial& rm, const factorization& bf, lp::explanation& exp) {
// here we repeat the same explanation for each lemma
c().explain(rm, exp);
c().explain(bf[0], exp);
c().explain(bf[1], exp);
}
void tangents::generate_tang_plane(const rational & a, const rational& b, const factor& x, const factor& y, bool below, lpvar j) {
lpvar jx = var(x);
lpvar jy = var(y);
add_empty_lemma();
c().negate_relation(jx, a);
c().negate_relation(jy, b);
#if Z3DEBUG
int mult_sign = nla::rat_sign(a - val(jx))*nla::rat_sign(b - val(jy));
SASSERT((mult_sign == 1) == below);
// If "mult_sign is 1" then (a - x)(b-y) > 0 and ab - bx - ay + xy > 0
// or -ab + bx + ay < xy or -ay - bx + xy > -ab
// val(j) stands for xy. So, finally we have -ay - bx + j > - ab
#endif
lp::lar_term t;
t.add_coeff_var(-a, jy);
t.add_coeff_var(-b, jx);
t.add_var(j);
c().mk_ineq(t, below? llc::GT : llc::LT, - a*b);
}
void tangents::tangent_lemma_bf(const monomial& m, const factorization& bf){
point a, b;
point xy (val(bf[0]), val(bf[1]));
rational correct_mult_val = xy.x * xy.y;
lpvar j =m.var();
SASSERT(canonize_sign(bf) == canonize_sign(m));
rational v = val(j);
bool below = v < correct_mult_val;
TRACE("nla_solver", tout << "below = " << below << std::endl; );
get_tang_points(a, b, below, v, xy);
TRACE("nla_solver", tout << "tang domain = "; print_tangent_domain(a, b, tout); tout << std::endl;);
unsigned lemmas_size_was = c().m_lemma_vec->size();
rational sign(1);
generate_two_tang_lines(bf, xy, j);
generate_tang_plane(a.x, a.y, bf[0], bf[1], below, j);
generate_tang_plane(b.x, b.y, bf[0], bf[1], below, j);
if (!bf.is_mon()) {
lp::explanation expl;
generate_explanations_of_tang_lemma(m, bf, expl);
for (unsigned i = lemmas_size_was; i < c().m_lemma_vec->size(); i++) {
auto &l = ((*c().m_lemma_vec)[i]);
l.expl().add(expl);
}
}
TRACE("nla_solver",
for (unsigned i = lemmas_size_was; i < c().m_lemma_vec->size(); i++)
c().print_specific_lemma((*c().m_lemma_vec)[i], tout); );
}
void tangents::generate_two_tang_lines(const factorization & bf, const point& xy, lpvar j) {
add_empty_lemma();
c().mk_ineq(var(bf[0]), llc::NE, xy.x);
c().mk_ineq(j, - xy.x, var(bf[1]), llc::EQ);
add_empty_lemma();
c().mk_ineq(var(bf[1]), llc::NE, xy.y);
c().mk_ineq(j, - xy.y, var(bf[0]), llc::EQ);
}
// Get two planes tangent to surface z = xy, one at point a, and another at point b.
// One can show that these planes still create a cut.
void tangents::get_initial_tang_points(point &a, point &b, const point& xy,
bool below) const {
const rational& x = xy.x;
const rational& y = xy.y;
if (!below){
a = point(x - rational(1), y + rational(1));
b = point(x + rational(1), y - rational(1));
}
else {
a = point(x - rational(1), y - rational(1));
b = point(x + rational(1), y + rational(1));
}
}
void tangents::push_tang_point(point &a, const point& xy, bool below, const rational& correct_val, const rational& val) const {
SASSERT(correct_val == xy.x * xy.y);
int steps = 10;
point del = a - xy;
while (steps--) {
del *= rational(2);
point na = xy + del;
TRACE("nla_solver_tp", tout << "del = " << del << std::endl;);
if (!plane_is_correct_cut(na, xy, correct_val, val, below)) {
TRACE("nla_solver_tp", tout << "exit";tout << std::endl;);
return;
}
a = na;
}
}
void tangents::push_tang_points(point &a, point &b, const point& xy, bool below, const rational& correct_val, const rational& val) const {
push_tang_point(a, xy, below, correct_val, val);
push_tang_point(b, xy, below, correct_val, val);
}
rational tangents::tang_plane(const point& a, const point& x) const {
return a.x * x.y + a.y * x.x - a.x * a.y;
}
bool tangents:: plane_is_correct_cut(const point& plane,
const point& xy,
const rational & correct_val,
const rational & val,
bool below) const {
SASSERT(correct_val == xy.x * xy.y);
if (below && val > correct_val) return false;
rational sign = below? rational(1) : rational(-1);
rational px = tang_plane(plane, xy);
return ((correct_val - px)*sign).is_pos() && !((px - val)*sign).is_neg();
}
// "below" means that the val is below the surface xy
void tangents::get_tang_points(point &a, point &b, bool below, const rational& val,
const point& xy) const {
get_initial_tang_points(a, b, xy, below);
auto correct_val = xy.x * xy.y;
TRACE("nla_solver", tout << "xy = " << xy << ", correct val = " << xy.x * xy.y;
tout << "\ntang points:"; print_tangent_domain(a, b, tout);tout << std::endl;);
TRACE("nla_solver", tout << "tang_plane(a, xy) = " << tang_plane(a, xy) << " , val = " << val;
tout << "\ntang_plane(b, xy) = " << tang_plane(b, xy); tout << std::endl;);
SASSERT(plane_is_correct_cut(a, xy, correct_val, val, below));
SASSERT(plane_is_correct_cut(b, xy, correct_val, val, below));
push_tang_points(a, b, xy, below, correct_val, val);
TRACE("nla_solver", tout << "pushed a = " << a << "\npushed b = " << b << std::endl;);
}
}