mirror of
https://github.com/Z3Prover/z3
synced 2025-04-12 12:08:18 +00:00
This is a continuation of the work started by using stdbool and continued by switching from Z3_TRUE|FALSE to true|false.
422 lines
16 KiB
C++
422 lines
16 KiB
C++
/*++
|
|
Copyright (c) 2012 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
api_algebraic.cpp
|
|
|
|
Abstract:
|
|
|
|
Additional APIs for handling Z3 algebraic numbers encoded as
|
|
Z3_ASTs
|
|
|
|
Author:
|
|
|
|
Leonardo de Moura (leonardo) 2012-12-07
|
|
|
|
Notes:
|
|
|
|
--*/
|
|
#include "api/z3.h"
|
|
#include "api/api_log_macros.h"
|
|
#include "api/api_context.h"
|
|
#include "api/api_ast_vector.h"
|
|
#include "math/polynomial/algebraic_numbers.h"
|
|
#include "ast/expr2polynomial.h"
|
|
#include "util/cancel_eh.h"
|
|
#include "util/scoped_timer.h"
|
|
|
|
|
|
#define CHECK_IS_ALGEBRAIC(ARG, RET) { \
|
|
if (!Z3_algebraic_is_value_core(c, ARG)) { \
|
|
SET_ERROR_CODE(Z3_INVALID_ARG, nullptr); \
|
|
return RET; \
|
|
} \
|
|
}
|
|
|
|
#define CHECK_IS_ALGEBRAIC_X(ARG, RET) { \
|
|
if (!Z3_algebraic_is_value_core(c, ARG)) { \
|
|
SET_ERROR_CODE(Z3_INVALID_ARG, nullptr); \
|
|
RETURN_Z3(RET); \
|
|
} \
|
|
}
|
|
|
|
static arith_util & au(Z3_context c) {
|
|
return mk_c(c)->autil();
|
|
}
|
|
|
|
static algebraic_numbers::manager & am(Z3_context c) {
|
|
return au(c).am();
|
|
}
|
|
|
|
static bool is_rational(Z3_context c, Z3_ast a) {
|
|
return au(c).is_numeral(to_expr(a));
|
|
}
|
|
|
|
static bool is_irrational(Z3_context c, Z3_ast a) {
|
|
return au(c).is_irrational_algebraic_numeral(to_expr(a));
|
|
}
|
|
|
|
static rational get_rational(Z3_context c, Z3_ast a) {
|
|
SASSERT(is_rational(c, a));
|
|
rational r;
|
|
VERIFY(au(c).is_numeral(to_expr(a), r));
|
|
return r;
|
|
}
|
|
|
|
static algebraic_numbers::anum const & get_irrational(Z3_context c, Z3_ast a) {
|
|
SASSERT(is_irrational(c, a));
|
|
return au(c).to_irrational_algebraic_numeral(to_expr(a));
|
|
}
|
|
|
|
extern "C" {
|
|
|
|
bool Z3_algebraic_is_value_core(Z3_context c, Z3_ast a) {
|
|
api::context * _c = mk_c(c);
|
|
return
|
|
is_expr(a) &&
|
|
(_c->autil().is_numeral(to_expr(a)) ||
|
|
_c->autil().is_irrational_algebraic_numeral(to_expr(a)));
|
|
}
|
|
|
|
bool Z3_API Z3_algebraic_is_value(Z3_context c, Z3_ast a) {
|
|
Z3_TRY;
|
|
LOG_Z3_algebraic_is_value(c, a);
|
|
RESET_ERROR_CODE();
|
|
return Z3_algebraic_is_value_core(c, a);
|
|
Z3_CATCH_RETURN(false);
|
|
}
|
|
|
|
bool Z3_API Z3_algebraic_is_pos(Z3_context c, Z3_ast a) {
|
|
return Z3_algebraic_sign(c, a) > 0;
|
|
}
|
|
|
|
bool Z3_API Z3_algebraic_is_neg(Z3_context c, Z3_ast a) {
|
|
return Z3_algebraic_sign(c, a) < 0;
|
|
}
|
|
|
|
bool Z3_API Z3_algebraic_is_zero(Z3_context c, Z3_ast a) {
|
|
return Z3_algebraic_sign(c, a) == 0;
|
|
}
|
|
|
|
int Z3_API Z3_algebraic_sign(Z3_context c, Z3_ast a) {
|
|
Z3_TRY;
|
|
LOG_Z3_algebraic_sign(c, a);
|
|
RESET_ERROR_CODE();
|
|
CHECK_IS_ALGEBRAIC(a, 0);
|
|
if (is_rational(c, a)) {
|
|
rational v = get_rational(c, a);
|
|
if (v.is_pos()) return 1;
|
|
else if (v.is_neg()) return -1;
|
|
else return 0;
|
|
}
|
|
else {
|
|
algebraic_numbers::anum const & v = get_irrational(c, a);
|
|
if (am(c).is_pos(v)) return 1;
|
|
else if (am(c).is_neg(v)) return -1;
|
|
else return 0;
|
|
}
|
|
Z3_CATCH_RETURN(0);
|
|
}
|
|
|
|
#define BIN_OP(RAT_OP, IRAT_OP) \
|
|
algebraic_numbers::manager & _am = am(c); \
|
|
ast * r = 0; \
|
|
if (is_rational(c, a)) { \
|
|
rational av = get_rational(c, a); \
|
|
if (is_rational(c, b)) { \
|
|
rational bv = get_rational(c, b); \
|
|
r = au(c).mk_numeral(av RAT_OP bv, false); \
|
|
} \
|
|
else { \
|
|
algebraic_numbers::anum const & bv = get_irrational(c, b); \
|
|
scoped_anum _av(_am); \
|
|
_am.set(_av, av.to_mpq()); \
|
|
scoped_anum _r(_am); \
|
|
_am.IRAT_OP(_av, bv, _r); \
|
|
r = au(c).mk_numeral(_r, false); \
|
|
} \
|
|
} \
|
|
else { \
|
|
algebraic_numbers::anum const & av = get_irrational(c, a); \
|
|
if (is_rational(c, b)) { \
|
|
rational bv = get_rational(c, b); \
|
|
scoped_anum _bv(_am); \
|
|
_am.set(_bv, bv.to_mpq()); \
|
|
scoped_anum _r(_am); \
|
|
_am.IRAT_OP(av, _bv, _r); \
|
|
r = au(c).mk_numeral(_r, false); \
|
|
} \
|
|
else { \
|
|
algebraic_numbers::anum const & bv = get_irrational(c, b); \
|
|
scoped_anum _r(_am); \
|
|
_am.IRAT_OP(av, bv, _r); \
|
|
r = au(c).mk_numeral(_r, false); \
|
|
} \
|
|
} \
|
|
mk_c(c)->save_ast_trail(r); \
|
|
RETURN_Z3(of_ast(r));
|
|
|
|
|
|
Z3_ast Z3_API Z3_algebraic_add(Z3_context c, Z3_ast a, Z3_ast b) {
|
|
Z3_TRY;
|
|
LOG_Z3_algebraic_add(c, a, b);
|
|
RESET_ERROR_CODE();
|
|
CHECK_IS_ALGEBRAIC_X(a, nullptr);
|
|
CHECK_IS_ALGEBRAIC_X(b, nullptr);
|
|
BIN_OP(+,add);
|
|
Z3_CATCH_RETURN(nullptr);
|
|
}
|
|
|
|
Z3_ast Z3_API Z3_algebraic_sub(Z3_context c, Z3_ast a, Z3_ast b) {
|
|
Z3_TRY;
|
|
LOG_Z3_algebraic_sub(c, a, b);
|
|
RESET_ERROR_CODE();
|
|
CHECK_IS_ALGEBRAIC_X(a, nullptr);
|
|
CHECK_IS_ALGEBRAIC_X(b, nullptr);
|
|
BIN_OP(-,sub);
|
|
Z3_CATCH_RETURN(nullptr);
|
|
}
|
|
|
|
Z3_ast Z3_API Z3_algebraic_mul(Z3_context c, Z3_ast a, Z3_ast b) {
|
|
Z3_TRY;
|
|
LOG_Z3_algebraic_mul(c, a, b);
|
|
RESET_ERROR_CODE();
|
|
CHECK_IS_ALGEBRAIC_X(a, nullptr);
|
|
CHECK_IS_ALGEBRAIC_X(b, nullptr);
|
|
BIN_OP(*,mul);
|
|
Z3_CATCH_RETURN(nullptr);
|
|
}
|
|
|
|
Z3_ast Z3_API Z3_algebraic_div(Z3_context c, Z3_ast a, Z3_ast b) {
|
|
Z3_TRY;
|
|
LOG_Z3_algebraic_div(c, a, b);
|
|
RESET_ERROR_CODE();
|
|
CHECK_IS_ALGEBRAIC_X(a, nullptr);
|
|
CHECK_IS_ALGEBRAIC_X(b, nullptr);
|
|
if ((is_rational(c, b) && get_rational(c, b).is_zero()) ||
|
|
(!is_rational(c, b) && am(c).is_zero(get_irrational(c, b)))) {
|
|
SET_ERROR_CODE(Z3_INVALID_ARG, nullptr);
|
|
RETURN_Z3(nullptr);
|
|
}
|
|
BIN_OP(/,div);
|
|
Z3_CATCH_RETURN(nullptr);
|
|
}
|
|
|
|
Z3_ast Z3_API Z3_algebraic_root(Z3_context c, Z3_ast a, unsigned k) {
|
|
Z3_TRY;
|
|
LOG_Z3_algebraic_root(c, a, k);
|
|
RESET_ERROR_CODE();
|
|
CHECK_IS_ALGEBRAIC_X(a, nullptr);
|
|
if (k % 2 == 0) {
|
|
if ((is_rational(c, a) && get_rational(c, a).is_neg()) ||
|
|
(!is_rational(c, a) && am(c).is_neg(get_irrational(c, a)))) {
|
|
SET_ERROR_CODE(Z3_INVALID_ARG, nullptr);
|
|
RETURN_Z3(nullptr);
|
|
}
|
|
}
|
|
algebraic_numbers::manager & _am = am(c);
|
|
scoped_anum _r(_am);
|
|
if (is_rational(c, a)) {
|
|
scoped_anum av(_am);
|
|
_am.set(av, get_rational(c, a).to_mpq());
|
|
_am.root(av, k, _r);
|
|
}
|
|
else {
|
|
algebraic_numbers::anum const & av = get_irrational(c, a);
|
|
_am.root(av, k, _r);
|
|
}
|
|
expr * r = au(c).mk_numeral(_r, false);
|
|
mk_c(c)->save_ast_trail(r);
|
|
RETURN_Z3(of_ast(r));
|
|
Z3_CATCH_RETURN(nullptr);
|
|
}
|
|
|
|
Z3_ast Z3_API Z3_algebraic_power(Z3_context c, Z3_ast a, unsigned k) {
|
|
Z3_TRY;
|
|
LOG_Z3_algebraic_power(c, a, k);
|
|
RESET_ERROR_CODE();
|
|
CHECK_IS_ALGEBRAIC_X(a, nullptr);
|
|
algebraic_numbers::manager & _am = am(c);
|
|
scoped_anum _r(_am);
|
|
if (is_rational(c, a)) {
|
|
scoped_anum av(_am);
|
|
_am.set(av, get_rational(c, a).to_mpq());
|
|
_am.power(av, k, _r);
|
|
}
|
|
else {
|
|
algebraic_numbers::anum const & av = get_irrational(c, a);
|
|
_am.power(av, k, _r);
|
|
}
|
|
expr * r = au(c).mk_numeral(_r, false);
|
|
mk_c(c)->save_ast_trail(r);
|
|
RETURN_Z3(of_ast(r));
|
|
Z3_CATCH_RETURN(nullptr);
|
|
}
|
|
|
|
#define BIN_PRED(RAT_PRED, IRAT_PRED) \
|
|
algebraic_numbers::manager & _am = am(c); \
|
|
bool r; \
|
|
if (is_rational(c, a)) { \
|
|
rational av = get_rational(c, a); \
|
|
if (is_rational(c, b)) { \
|
|
rational bv = get_rational(c, b); \
|
|
r = av RAT_PRED bv; \
|
|
} \
|
|
else { \
|
|
algebraic_numbers::anum const & bv = get_irrational(c, b); \
|
|
scoped_anum _av(_am); \
|
|
_am.set(_av, av.to_mpq()); \
|
|
r = _am.IRAT_PRED(_av, bv); \
|
|
} \
|
|
} \
|
|
else { \
|
|
algebraic_numbers::anum const & av = get_irrational(c, a); \
|
|
if (is_rational(c, b)) { \
|
|
rational bv = get_rational(c, b); \
|
|
scoped_anum _bv(_am); \
|
|
_am.set(_bv, bv.to_mpq()); \
|
|
r = _am.IRAT_PRED(av, _bv); \
|
|
} \
|
|
else { \
|
|
algebraic_numbers::anum const & bv = get_irrational(c, b); \
|
|
r = _am.IRAT_PRED(av, bv); \
|
|
} \
|
|
} \
|
|
return r;
|
|
|
|
|
|
bool Z3_API Z3_algebraic_lt(Z3_context c, Z3_ast a, Z3_ast b) {
|
|
Z3_TRY;
|
|
LOG_Z3_algebraic_lt(c, a, b);
|
|
RESET_ERROR_CODE();
|
|
CHECK_IS_ALGEBRAIC(a, 0);
|
|
CHECK_IS_ALGEBRAIC(b, 0);
|
|
BIN_PRED(<,lt);
|
|
Z3_CATCH_RETURN(false);
|
|
}
|
|
|
|
bool Z3_API Z3_algebraic_gt(Z3_context c, Z3_ast a, Z3_ast b) {
|
|
return Z3_algebraic_lt(c, b, a);
|
|
}
|
|
|
|
bool Z3_API Z3_algebraic_le(Z3_context c, Z3_ast a, Z3_ast b) {
|
|
return !Z3_algebraic_lt(c, b, a);
|
|
}
|
|
|
|
bool Z3_API Z3_algebraic_ge(Z3_context c, Z3_ast a, Z3_ast b) {
|
|
return !Z3_algebraic_lt(c, a, b);
|
|
}
|
|
|
|
bool Z3_API Z3_algebraic_eq(Z3_context c, Z3_ast a, Z3_ast b) {
|
|
Z3_TRY;
|
|
LOG_Z3_algebraic_eq(c, a, b);
|
|
RESET_ERROR_CODE();
|
|
CHECK_IS_ALGEBRAIC(a, 0);
|
|
CHECK_IS_ALGEBRAIC(b, 0);
|
|
BIN_PRED(==,eq);
|
|
Z3_CATCH_RETURN(0);
|
|
}
|
|
|
|
bool Z3_API Z3_algebraic_neq(Z3_context c, Z3_ast a, Z3_ast b) {
|
|
return !Z3_algebraic_eq(c, a, b);
|
|
}
|
|
|
|
static bool to_anum_vector(Z3_context c, unsigned n, Z3_ast a[], scoped_anum_vector & as) {
|
|
algebraic_numbers::manager & _am = am(c);
|
|
scoped_anum tmp(_am);
|
|
for (unsigned i = 0; i < n; i++) {
|
|
if (is_rational(c, a[i])) {
|
|
_am.set(tmp, get_rational(c, a[i]).to_mpq());
|
|
as.push_back(tmp);
|
|
}
|
|
else if (is_irrational(c, a[i])) {
|
|
as.push_back(get_irrational(c, a[i]));
|
|
}
|
|
else {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
class vector_var2anum : public polynomial::var2anum {
|
|
scoped_anum_vector const & m_as;
|
|
public:
|
|
vector_var2anum(scoped_anum_vector & as):m_as(as) {}
|
|
virtual ~vector_var2anum() {}
|
|
algebraic_numbers::manager & m() const override { return m_as.m(); }
|
|
bool contains(polynomial::var x) const override { return static_cast<unsigned>(x) < m_as.size(); }
|
|
algebraic_numbers::anum const & operator()(polynomial::var x) const override { return m_as.get(x); }
|
|
};
|
|
|
|
Z3_ast_vector Z3_API Z3_algebraic_roots(Z3_context c, Z3_ast p, unsigned n, Z3_ast a[]) {
|
|
Z3_TRY;
|
|
LOG_Z3_algebraic_roots(c, p, n, a);
|
|
RESET_ERROR_CODE();
|
|
polynomial::manager & pm = mk_c(c)->pm();
|
|
polynomial_ref _p(pm);
|
|
polynomial::scoped_numeral d(pm.m());
|
|
expr2polynomial converter(mk_c(c)->m(), pm, nullptr, true);
|
|
if (!converter.to_polynomial(to_expr(p), _p, d) ||
|
|
static_cast<unsigned>(max_var(_p)) >= n + 1) {
|
|
SET_ERROR_CODE(Z3_INVALID_ARG, nullptr);
|
|
return nullptr;
|
|
}
|
|
algebraic_numbers::manager & _am = am(c);
|
|
scoped_anum_vector as(_am);
|
|
if (!to_anum_vector(c, n, a, as)) {
|
|
SET_ERROR_CODE(Z3_INVALID_ARG, nullptr);
|
|
return nullptr;
|
|
}
|
|
scoped_anum_vector roots(_am);
|
|
{
|
|
cancel_eh<reslimit> eh(mk_c(c)->m().limit());
|
|
api::context::set_interruptable si(*(mk_c(c)), eh);
|
|
scoped_timer timer(mk_c(c)->params().m_timeout, &eh);
|
|
vector_var2anum v2a(as);
|
|
_am.isolate_roots(_p, v2a, roots);
|
|
}
|
|
Z3_ast_vector_ref* result = alloc(Z3_ast_vector_ref, *mk_c(c), mk_c(c)->m());
|
|
mk_c(c)->save_object(result);
|
|
for (unsigned i = 0; i < roots.size(); i++) {
|
|
result->m_ast_vector.push_back(au(c).mk_numeral(roots.get(i), false));
|
|
}
|
|
RETURN_Z3(of_ast_vector(result));
|
|
Z3_CATCH_RETURN(nullptr);
|
|
}
|
|
|
|
int Z3_API Z3_algebraic_eval(Z3_context c, Z3_ast p, unsigned n, Z3_ast a[]) {
|
|
Z3_TRY;
|
|
LOG_Z3_algebraic_eval(c, p, n, a);
|
|
RESET_ERROR_CODE();
|
|
polynomial::manager & pm = mk_c(c)->pm();
|
|
polynomial_ref _p(pm);
|
|
polynomial::scoped_numeral d(pm.m());
|
|
expr2polynomial converter(mk_c(c)->m(), pm, nullptr, true);
|
|
if (!converter.to_polynomial(to_expr(p), _p, d) ||
|
|
static_cast<unsigned>(max_var(_p)) >= n) {
|
|
SET_ERROR_CODE(Z3_INVALID_ARG, nullptr);
|
|
return 0;
|
|
}
|
|
algebraic_numbers::manager & _am = am(c);
|
|
scoped_anum_vector as(_am);
|
|
if (!to_anum_vector(c, n, a, as)) {
|
|
SET_ERROR_CODE(Z3_INVALID_ARG, nullptr);
|
|
return 0;
|
|
}
|
|
{
|
|
cancel_eh<reslimit> eh(mk_c(c)->m().limit());
|
|
api::context::set_interruptable si(*(mk_c(c)), eh);
|
|
scoped_timer timer(mk_c(c)->params().m_timeout, &eh);
|
|
vector_var2anum v2a(as);
|
|
int r = _am.eval_sign_at(_p, v2a);
|
|
if (r > 0) return 1;
|
|
else if (r < 0) return -1;
|
|
else return 0;
|
|
}
|
|
Z3_CATCH_RETURN(0);
|
|
}
|
|
|
|
};
|