mirror of
https://github.com/Z3Prover/z3
synced 2025-10-09 01:11:55 +00:00
403 lines
11 KiB
C++
403 lines
11 KiB
C++
|
|
#include <vector>
|
|
#include <thread>
|
|
#include <mutex>
|
|
#include <cmath>
|
|
#include <cassert>
|
|
#include <iostream>
|
|
#include <random>
|
|
|
|
std::mutex cout_mutex;
|
|
// Initially there are no cubes.
|
|
// workers that enter at this stage will receive an empty cube to work on.
|
|
// If they succeeed, they return the empty conflict.
|
|
// If they fail, they generate two cubes, one with +id and one with -id
|
|
// and add them to the cube manager.
|
|
|
|
#define LOG_OUT(_out_) { \
|
|
std::lock_guard<std::mutex> lock(cout_mutex); \
|
|
_out_ \
|
|
}
|
|
|
|
struct atom {
|
|
unsigned id = UINT_MAX;
|
|
atom() {}
|
|
atom(unsigned id) : id(id) {}
|
|
bool operator<(atom const& other) const { return id < other.id; }
|
|
bool operator==(atom const& other) const { return id == other.id; }
|
|
bool is_null() const { return id == UINT_MAX; }
|
|
};
|
|
|
|
struct literal {
|
|
atom a;
|
|
bool sign;
|
|
literal(atom a, bool s = false) : a(a), sign(s) {}
|
|
literal operator~() const { return literal(a, !sign); }
|
|
bool operator==(literal const& other) const { return a == other.a && sign == other.sign; }
|
|
};
|
|
|
|
inline std::ostream& operator<<(std::ostream& out, literal const& l) {
|
|
if (!l.sign)
|
|
out << "-";
|
|
out << l.a.id;
|
|
return out;
|
|
}
|
|
|
|
using literal_vector = std::vector<literal>;
|
|
|
|
inline std::ostream& operator<<(std::ostream& out, literal_vector const& v) {
|
|
out << "[";
|
|
for (unsigned i = 0; i < v.size(); ++i) {
|
|
if (i > 0)
|
|
out << " ";
|
|
out << v[i];
|
|
}
|
|
out << "]";
|
|
return out;
|
|
}
|
|
|
|
enum status {
|
|
open,
|
|
closed,
|
|
active
|
|
};
|
|
|
|
|
|
struct node {
|
|
node* left = nullptr;
|
|
node* right = nullptr;
|
|
node* parent = nullptr;
|
|
atom atom = UINT_MAX;
|
|
status status = status::open;
|
|
|
|
node() {}
|
|
node(node* parent) : parent(parent) {
|
|
}
|
|
node(node* parent, literal lit) : parent(parent) {
|
|
parent->atom = lit.a;
|
|
if (lit.sign)
|
|
parent->left = this;
|
|
else
|
|
parent->right = this;
|
|
}
|
|
|
|
literal_vector get_cube() {
|
|
literal_vector path;
|
|
auto t = this;
|
|
while (t->parent) {
|
|
literal lit = t->parent->atom;
|
|
if (t == t->parent->left)
|
|
lit = ~lit;
|
|
path.push_back(lit);
|
|
t = t->parent;
|
|
}
|
|
std::reverse(path.begin(), path.end());
|
|
return path;
|
|
}
|
|
|
|
void display(std::ostream& out, unsigned indent) const {
|
|
auto t = this;
|
|
for (unsigned i = 0; i < indent; ++i)
|
|
out << " ";
|
|
if (!t->atom.is_null())
|
|
out << t->atom;
|
|
else
|
|
out << "leaf";
|
|
out << (t->status == status::open ? " (o)" : t->status == status::closed ? " (c)" : " (a)");
|
|
out << "\n";
|
|
if (t->left)
|
|
t->left->display(out, indent + 2);
|
|
if (t->right)
|
|
t->right->display(out, indent + 2);
|
|
}
|
|
|
|
std::ostream& display(std::ostream& out) const {
|
|
display(out, 0);
|
|
return out;
|
|
}
|
|
|
|
node* get_open() {
|
|
if (!left && !right && status == status::open)
|
|
return this;
|
|
if (left) {
|
|
auto r = left->get_open();
|
|
if (r)
|
|
return r;
|
|
}
|
|
if (right) {
|
|
auto r = right->get_open();
|
|
if (r)
|
|
return r;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
|
|
node* get_active() {
|
|
|
|
if (status == status::active)
|
|
return this;
|
|
|
|
if (left) {
|
|
auto r = left->get_active();
|
|
if (r)
|
|
return r;
|
|
}
|
|
if (right) {
|
|
auto r = right->get_active();
|
|
if (r)
|
|
return r;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
};
|
|
|
|
class search_tree {
|
|
node* root;
|
|
void close_rec(node* t) {
|
|
// if t->status == status::active, you can possibly pre-empt a worker.
|
|
t->status = status::closed;
|
|
if (t->left)
|
|
close_rec(t->left);
|
|
if (t->right)
|
|
close_rec(t->right);
|
|
}
|
|
|
|
bool contains(literal_vector const& core, literal lit) const {
|
|
for (auto c : core)
|
|
if (lit == c)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
public:
|
|
|
|
search_tree() {
|
|
root = new node;
|
|
}
|
|
|
|
node* add_path(literal_vector const& path) {
|
|
auto t = root;
|
|
for (auto lit : path) {
|
|
atom atom = lit.a;
|
|
if (t->atom.is_null()) {
|
|
t->atom = atom;
|
|
}
|
|
assert(t->atom == atom);
|
|
t->status = status::open;
|
|
if (lit.sign) {
|
|
if (!t->left)
|
|
t = new node(t, lit);
|
|
else
|
|
t = t->left;
|
|
}
|
|
else {
|
|
if (!t->right)
|
|
t = new node(t, lit);
|
|
else
|
|
t = t->right;
|
|
}
|
|
}
|
|
return t;
|
|
}
|
|
|
|
node* get_open() const {
|
|
return root->get_open();
|
|
}
|
|
|
|
node* get_active() const {
|
|
return root->get_active();
|
|
}
|
|
|
|
bool is_closed() const {
|
|
return root->status == status::closed;
|
|
}
|
|
|
|
// close a branch that contains a core
|
|
void close(literal_vector const& path, literal_vector const& core) {
|
|
unsigned num_hit = 0;
|
|
auto t = root;
|
|
for (unsigned i = 0; num_hit < core.size(); ++i) {
|
|
assert(i < path.size());
|
|
LOG_OUT(std::cout << "close " << path << " " << core << " at " << i << " " << t->atom << "\n";);
|
|
literal lit = path[i];
|
|
atom atom = lit.a;
|
|
assert(t->atom == atom);
|
|
t = lit.sign ? t->left : t->right;
|
|
if (contains(core, lit))
|
|
num_hit++;
|
|
}
|
|
close_rec(t);
|
|
}
|
|
|
|
std::ostream& display(std::ostream& out) const {
|
|
return root->display(out);
|
|
}
|
|
|
|
};
|
|
|
|
class cube_manager {
|
|
std::mutex mutex;
|
|
std::condition_variable cv;
|
|
search_tree tree;
|
|
std::atomic<bool> at_start = true;
|
|
unsigned num_workers = 0;
|
|
std::atomic<unsigned> num_waiting = 0;
|
|
public:
|
|
cube_manager(unsigned num_workers) : num_workers(num_workers) {}
|
|
~cube_manager() {}
|
|
|
|
void add_atom(atom atom) {
|
|
std::lock_guard<std::mutex> lock(mutex);
|
|
if (!at_start)
|
|
return;
|
|
LOG_OUT(std::cout << "adding atom " << atom << "\n";);
|
|
at_start = false;
|
|
tree.add_path({ literal(atom) });
|
|
tree.add_path({ ~literal(atom) });
|
|
LOG_OUT(tree.display(std::cout););
|
|
cv.notify_all();
|
|
}
|
|
|
|
void add_cube(literal_vector& cube, literal lit) {
|
|
std::lock_guard<std::mutex> lock(mutex);
|
|
literal_vector cube1(cube);
|
|
cube1.push_back(lit);
|
|
tree.add_path(cube1);
|
|
cube.push_back(~lit);
|
|
auto t = tree.add_path(cube);
|
|
t->status = status::active;
|
|
at_start = false;
|
|
cv.notify_one();
|
|
LOG_OUT(std::cout << "adding cube " << cube1 << " and " << cube << "\n";);
|
|
}
|
|
|
|
bool get_cube(literal_vector& cube) {
|
|
std::unique_lock<std::mutex> lock(mutex);
|
|
if (at_start) {
|
|
cube.clear();
|
|
return true;
|
|
}
|
|
node* t = nullptr;
|
|
while ((t = tree.get_open()) == nullptr) {
|
|
// if all threads have reported they are done, then return false
|
|
// otherwise wait for condition variable.
|
|
LOG_OUT(std::cout << "waiting... " << tree.get_active() << "\n";);
|
|
if (!tree.get_active()) {
|
|
LOG_OUT(std::cout << "all done\n";);
|
|
cv.notify_all();
|
|
return false;
|
|
}
|
|
cv.wait(lock);
|
|
}
|
|
cube = t->get_cube();
|
|
LOG_OUT(std::cout << "got cube " << cube << " from " << t << " " << t->status << "\n";);
|
|
t->status = status::active;
|
|
return true;
|
|
}
|
|
|
|
void close(literal_vector const& path, literal_vector const& core) {
|
|
std::lock_guard<std::mutex> lock(mutex);
|
|
tree.close(path, core);
|
|
LOG_OUT(std::cout << "closing "; tree.display(std::cout););
|
|
if (tree.is_closed()) {
|
|
LOG_OUT(std::cout << "all done\n";);
|
|
cv.notify_all();
|
|
}
|
|
}
|
|
|
|
};
|
|
|
|
struct random_gen {
|
|
unsigned idx = std::rand();
|
|
random_gen(unsigned seed) : idx(seed) {}
|
|
|
|
unsigned operator()(unsigned k) {
|
|
return std::rand() % k;
|
|
}
|
|
};
|
|
|
|
class worker {
|
|
unsigned id;
|
|
cube_manager& cm;
|
|
random_gen m_rand;
|
|
|
|
bool solve_cube(const literal_vector& cube) {
|
|
// dummy implementation
|
|
LOG_OUT(std::cout << id << " solving " << cube << "\n";);
|
|
std::this_thread::sleep_for(std::chrono::milliseconds(50 + m_rand(100)));
|
|
// the deeper the cube, the more likely we are to succeed.
|
|
// 1 - (9/10)^(|cube|) success probability
|
|
if (cube.empty())
|
|
return false;
|
|
double prob = m_rand(100);
|
|
double threshold = 100.0 * (1.0 - std::pow(9.0 / 10.0, cube.size()));
|
|
bool solved = prob < threshold;
|
|
LOG_OUT(std::cout << id << (solved ? " solved " : " failed ") << cube << " " << prob << " " << threshold << "\n";);
|
|
return solved;
|
|
}
|
|
|
|
public:
|
|
worker(unsigned id, cube_manager& cm) : id(id), cm(cm), m_rand(id) {}
|
|
~worker() {}
|
|
void run() {
|
|
literal_vector cube;
|
|
while (cm.get_cube(cube)) {
|
|
while (true) {
|
|
if (solve_cube(cube)) {
|
|
literal_vector core;
|
|
for (auto l : cube)
|
|
if (m_rand(2) == 0)
|
|
core.push_back(l);
|
|
cm.close(cube, core);
|
|
break;
|
|
}
|
|
atom atom = 1 + cube.size() + 1000 * id;
|
|
if (cube.empty()) {
|
|
cm.add_atom(atom);
|
|
break;
|
|
}
|
|
literal lit(atom);
|
|
if (m_rand(2) == 0)
|
|
lit = ~lit;
|
|
|
|
cm.add_cube(cube, lit);
|
|
|
|
LOG_OUT(std::cout << id << " getting new cube\n";);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
|
|
class parallel_cuber {
|
|
unsigned num_workers;
|
|
std::vector<worker*> workers;
|
|
cube_manager cm;
|
|
public:
|
|
parallel_cuber(unsigned num_workers) :
|
|
num_workers(num_workers),
|
|
cm(num_workers) {
|
|
}
|
|
~parallel_cuber() {}
|
|
|
|
void start() {
|
|
for (unsigned i = 0; i < num_workers; ++i)
|
|
workers.push_back(new worker(i, cm));
|
|
std::vector<std::thread> threads;
|
|
for (auto w : workers)
|
|
threads.push_back(std::thread([w]() { w->run(); }));
|
|
for (auto& t : threads)
|
|
t.join();
|
|
for (auto w : workers)
|
|
delete w;
|
|
}
|
|
};
|
|
|
|
int main() {
|
|
parallel_cuber sp(8);
|
|
sp.start();
|
|
return 0;
|
|
}
|