3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-10-09 01:11:55 +00:00
z3/src/parallel.cpp
Nikolaj Bjorner 2a272e1507 move to structured types
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2025-09-05 11:31:40 -07:00

403 lines
11 KiB
C++

#include <vector>
#include <thread>
#include <mutex>
#include <cmath>
#include <cassert>
#include <iostream>
#include <random>
std::mutex cout_mutex;
// Initially there are no cubes.
// workers that enter at this stage will receive an empty cube to work on.
// If they succeeed, they return the empty conflict.
// If they fail, they generate two cubes, one with +id and one with -id
// and add them to the cube manager.
#define LOG_OUT(_out_) { \
std::lock_guard<std::mutex> lock(cout_mutex); \
_out_ \
}
struct atom {
unsigned id = UINT_MAX;
atom() {}
atom(unsigned id) : id(id) {}
bool operator<(atom const& other) const { return id < other.id; }
bool operator==(atom const& other) const { return id == other.id; }
bool is_null() const { return id == UINT_MAX; }
};
struct literal {
atom a;
bool sign;
literal(atom a, bool s = false) : a(a), sign(s) {}
literal operator~() const { return literal(a, !sign); }
bool operator==(literal const& other) const { return a == other.a && sign == other.sign; }
};
inline std::ostream& operator<<(std::ostream& out, literal const& l) {
if (!l.sign)
out << "-";
out << l.a.id;
return out;
}
using literal_vector = std::vector<literal>;
inline std::ostream& operator<<(std::ostream& out, literal_vector const& v) {
out << "[";
for (unsigned i = 0; i < v.size(); ++i) {
if (i > 0)
out << " ";
out << v[i];
}
out << "]";
return out;
}
enum status {
open,
closed,
active
};
struct node {
node* left = nullptr;
node* right = nullptr;
node* parent = nullptr;
atom atom = UINT_MAX;
status status = status::open;
node() {}
node(node* parent) : parent(parent) {
}
node(node* parent, literal lit) : parent(parent) {
parent->atom = lit.a;
if (lit.sign)
parent->left = this;
else
parent->right = this;
}
literal_vector get_cube() {
literal_vector path;
auto t = this;
while (t->parent) {
literal lit = t->parent->atom;
if (t == t->parent->left)
lit = ~lit;
path.push_back(lit);
t = t->parent;
}
std::reverse(path.begin(), path.end());
return path;
}
void display(std::ostream& out, unsigned indent) const {
auto t = this;
for (unsigned i = 0; i < indent; ++i)
out << " ";
if (!t->atom.is_null())
out << t->atom;
else
out << "leaf";
out << (t->status == status::open ? " (o)" : t->status == status::closed ? " (c)" : " (a)");
out << "\n";
if (t->left)
t->left->display(out, indent + 2);
if (t->right)
t->right->display(out, indent + 2);
}
std::ostream& display(std::ostream& out) const {
display(out, 0);
return out;
}
node* get_open() {
if (!left && !right && status == status::open)
return this;
if (left) {
auto r = left->get_open();
if (r)
return r;
}
if (right) {
auto r = right->get_open();
if (r)
return r;
}
return nullptr;
}
node* get_active() {
if (status == status::active)
return this;
if (left) {
auto r = left->get_active();
if (r)
return r;
}
if (right) {
auto r = right->get_active();
if (r)
return r;
}
return nullptr;
}
};
class search_tree {
node* root;
void close_rec(node* t) {
// if t->status == status::active, you can possibly pre-empt a worker.
t->status = status::closed;
if (t->left)
close_rec(t->left);
if (t->right)
close_rec(t->right);
}
bool contains(literal_vector const& core, literal lit) const {
for (auto c : core)
if (lit == c)
return true;
return false;
}
public:
search_tree() {
root = new node;
}
node* add_path(literal_vector const& path) {
auto t = root;
for (auto lit : path) {
atom atom = lit.a;
if (t->atom.is_null()) {
t->atom = atom;
}
assert(t->atom == atom);
t->status = status::open;
if (lit.sign) {
if (!t->left)
t = new node(t, lit);
else
t = t->left;
}
else {
if (!t->right)
t = new node(t, lit);
else
t = t->right;
}
}
return t;
}
node* get_open() const {
return root->get_open();
}
node* get_active() const {
return root->get_active();
}
bool is_closed() const {
return root->status == status::closed;
}
// close a branch that contains a core
void close(literal_vector const& path, literal_vector const& core) {
unsigned num_hit = 0;
auto t = root;
for (unsigned i = 0; num_hit < core.size(); ++i) {
assert(i < path.size());
LOG_OUT(std::cout << "close " << path << " " << core << " at " << i << " " << t->atom << "\n";);
literal lit = path[i];
atom atom = lit.a;
assert(t->atom == atom);
t = lit.sign ? t->left : t->right;
if (contains(core, lit))
num_hit++;
}
close_rec(t);
}
std::ostream& display(std::ostream& out) const {
return root->display(out);
}
};
class cube_manager {
std::mutex mutex;
std::condition_variable cv;
search_tree tree;
std::atomic<bool> at_start = true;
unsigned num_workers = 0;
std::atomic<unsigned> num_waiting = 0;
public:
cube_manager(unsigned num_workers) : num_workers(num_workers) {}
~cube_manager() {}
void add_atom(atom atom) {
std::lock_guard<std::mutex> lock(mutex);
if (!at_start)
return;
LOG_OUT(std::cout << "adding atom " << atom << "\n";);
at_start = false;
tree.add_path({ literal(atom) });
tree.add_path({ ~literal(atom) });
LOG_OUT(tree.display(std::cout););
cv.notify_all();
}
void add_cube(literal_vector& cube, literal lit) {
std::lock_guard<std::mutex> lock(mutex);
literal_vector cube1(cube);
cube1.push_back(lit);
tree.add_path(cube1);
cube.push_back(~lit);
auto t = tree.add_path(cube);
t->status = status::active;
at_start = false;
cv.notify_one();
LOG_OUT(std::cout << "adding cube " << cube1 << " and " << cube << "\n";);
}
bool get_cube(literal_vector& cube) {
std::unique_lock<std::mutex> lock(mutex);
if (at_start) {
cube.clear();
return true;
}
node* t = nullptr;
while ((t = tree.get_open()) == nullptr) {
// if all threads have reported they are done, then return false
// otherwise wait for condition variable.
LOG_OUT(std::cout << "waiting... " << tree.get_active() << "\n";);
if (!tree.get_active()) {
LOG_OUT(std::cout << "all done\n";);
cv.notify_all();
return false;
}
cv.wait(lock);
}
cube = t->get_cube();
LOG_OUT(std::cout << "got cube " << cube << " from " << t << " " << t->status << "\n";);
t->status = status::active;
return true;
}
void close(literal_vector const& path, literal_vector const& core) {
std::lock_guard<std::mutex> lock(mutex);
tree.close(path, core);
LOG_OUT(std::cout << "closing "; tree.display(std::cout););
if (tree.is_closed()) {
LOG_OUT(std::cout << "all done\n";);
cv.notify_all();
}
}
};
struct random_gen {
unsigned idx = std::rand();
random_gen(unsigned seed) : idx(seed) {}
unsigned operator()(unsigned k) {
return std::rand() % k;
}
};
class worker {
unsigned id;
cube_manager& cm;
random_gen m_rand;
bool solve_cube(const literal_vector& cube) {
// dummy implementation
LOG_OUT(std::cout << id << " solving " << cube << "\n";);
std::this_thread::sleep_for(std::chrono::milliseconds(50 + m_rand(100)));
// the deeper the cube, the more likely we are to succeed.
// 1 - (9/10)^(|cube|) success probability
if (cube.empty())
return false;
double prob = m_rand(100);
double threshold = 100.0 * (1.0 - std::pow(9.0 / 10.0, cube.size()));
bool solved = prob < threshold;
LOG_OUT(std::cout << id << (solved ? " solved " : " failed ") << cube << " " << prob << " " << threshold << "\n";);
return solved;
}
public:
worker(unsigned id, cube_manager& cm) : id(id), cm(cm), m_rand(id) {}
~worker() {}
void run() {
literal_vector cube;
while (cm.get_cube(cube)) {
while (true) {
if (solve_cube(cube)) {
literal_vector core;
for (auto l : cube)
if (m_rand(2) == 0)
core.push_back(l);
cm.close(cube, core);
break;
}
atom atom = 1 + cube.size() + 1000 * id;
if (cube.empty()) {
cm.add_atom(atom);
break;
}
literal lit(atom);
if (m_rand(2) == 0)
lit = ~lit;
cm.add_cube(cube, lit);
LOG_OUT(std::cout << id << " getting new cube\n";);
}
}
}
};
class parallel_cuber {
unsigned num_workers;
std::vector<worker*> workers;
cube_manager cm;
public:
parallel_cuber(unsigned num_workers) :
num_workers(num_workers),
cm(num_workers) {
}
~parallel_cuber() {}
void start() {
for (unsigned i = 0; i < num_workers; ++i)
workers.push_back(new worker(i, cm));
std::vector<std::thread> threads;
for (auto w : workers)
threads.push_back(std::thread([w]() { w->run(); }));
for (auto& t : threads)
t.join();
for (auto w : workers)
delete w;
}
};
int main() {
parallel_cuber sp(8);
sp.start();
return 0;
}