3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-25 10:05:32 +00:00
z3/src/math/lp/permutation_matrix_def.h
Lev Nachmanson 33cbd29ed0 mv util/lp to math/lp
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
2020-01-28 10:04:21 -08:00

337 lines
9.8 KiB
C++

/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
<name>
Abstract:
<abstract>
Author:
Lev Nachmanson (levnach)
Revision History:
--*/
#include "util/vector.h"
#include "math/lp/permutation_matrix.h"
namespace lp {
template <typename T, typename X> permutation_matrix<T, X>::permutation_matrix(unsigned length): m_permutation(length), m_rev(length), m_T_buffer(length), m_X_buffer(length) {
for (unsigned i = 0; i < length; i++) { // do not change the direction of the loop because of the vectorization bug in clang3.3
m_permutation[i] = m_rev[i] = i;
}
}
template <typename T, typename X> permutation_matrix<T, X>::permutation_matrix(unsigned length, vector<unsigned> const & values): m_permutation(length), m_rev(length) , m_T_buffer(length), m_X_buffer(length) {
for (unsigned i = 0; i < length; i++) {
set_val(i, values[i]);
}
}
// create a unit permutation of the given length
template <typename T, typename X> void permutation_matrix<T, X>::init(unsigned length) {
m_permutation.resize(length);
m_rev.resize(length);
m_T_buffer.resize(length);
m_X_buffer.resize(length);
for (unsigned i = 0; i < length; i++) {
m_permutation[i] = m_rev[i] = i;
}
}
#ifdef Z3DEBUG
template <typename T, typename X> void permutation_matrix<T, X>::print(std::ostream & out) const {
out << "[";
for (unsigned i = 0; i < size(); i++) {
out << m_permutation[i];
if (i < size() - 1) {
out << ",";
} else {
out << "]";
}
}
out << std::endl;
}
#endif
template <typename T, typename X>
void permutation_matrix<T, X>::apply_from_left(vector<X> & w, lp_settings & ) {
#ifdef Z3DEBUG
// dense_matrix<L, X> deb(*this);
// L * deb_w = clone_vector<L>(w, row_count());
// deb.apply_from_left(deb_w);
#endif
lp_assert(m_X_buffer.size() == w.size());
unsigned i = size();
while (i-- > 0) {
m_X_buffer[i] = w[m_permutation[i]];
}
i = size();
while (i-- > 0) {
w[i] = m_X_buffer[i];
}
#ifdef Z3DEBUG
// lp_assert(vectors_are_equal<L>(deb_w, w, row_count()));
// delete [] deb_w;
#endif
}
template <typename T, typename X>
void permutation_matrix<T, X>::apply_from_left_to_T(indexed_vector<T> & w, lp_settings & ) {
vector<T> t(w.m_index.size());
vector<unsigned> tmp_index(w.m_index.size());
copy_aside(t, tmp_index, w); // todo: is it too much copying
clear_data(w);
// set the new values
for (unsigned i = static_cast<unsigned>(t.size()); i > 0;) {
i--;
unsigned j = m_rev[tmp_index[i]];
w[j] = t[i];
w.m_index[i] = j;
}
}
template <typename T, typename X> void permutation_matrix<T, X>::apply_from_right(vector<T> & w) {
#ifdef Z3DEBUG
// dense_matrix<T, X> deb(*this);
// T * deb_w = clone_vector<T>(w, row_count());
// deb.apply_from_right(deb_w);
#endif
lp_assert(m_T_buffer.size() == w.size());
for (unsigned i = 0; i < size(); i++) {
m_T_buffer[i] = w[m_rev[i]];
}
for (unsigned i = 0; i < size(); i++) {
w[i] = m_T_buffer[i];
}
#ifdef Z3DEBUG
// lp_assert(vectors_are_equal<T>(deb_w, w, row_count()));
// delete [] deb_w;
#endif
}
template <typename T, typename X> void permutation_matrix<T, X>::apply_from_right(indexed_vector<T> & w) {
#ifdef Z3DEBUG
vector<T> wcopy(w.m_data);
apply_from_right(wcopy);
#endif
vector<T> buffer(w.m_index.size());
vector<unsigned> index_copy(w.m_index);
for (unsigned i = 0; i < w.m_index.size(); i++) {
buffer[i] = w.m_data[w.m_index[i]];
}
w.clear();
for (unsigned i = 0; i < index_copy.size(); i++) {
unsigned j = index_copy[i];
unsigned pj = m_permutation[j];
w.set_value(buffer[i], pj);
}
lp_assert(w.is_OK());
#ifdef Z3DEBUG
lp_assert(vectors_are_equal(wcopy, w.m_data));
#endif
}
template <typename T, typename X> template <typename L>
void permutation_matrix<T, X>::copy_aside(vector<L> & t, vector<unsigned> & tmp_index, indexed_vector<L> & w) {
for (unsigned i = static_cast<unsigned>(t.size()); i > 0;) {
i--;
unsigned j = w.m_index[i];
t[i] = w[j]; // copy aside all non-zeroes
tmp_index[i] = j; // and the indices too
}
}
template <typename T, typename X> template <typename L>
void permutation_matrix<T, X>::clear_data(indexed_vector<L> & w) {
// clear old non-zeroes
for (unsigned i = static_cast<unsigned>(w.m_index.size()); i > 0;) {
i--;
unsigned j = w.m_index[i];
w[j] = zero_of_type<L>();
}
}
template <typename T, typename X>template <typename L>
void permutation_matrix<T, X>::apply_reverse_from_left(indexed_vector<L> & w) {
// the result will be w = p(-1) * w
#ifdef Z3DEBUG
// dense_matrix<L, X> deb(get_reverse());
// L * deb_w = clone_vector<L>(w.m_data, row_count());
// deb.apply_from_left(deb_w);
#endif
vector<L> t(w.m_index.size());
vector<unsigned> tmp_index(w.m_index.size());
copy_aside(t, tmp_index, w);
clear_data(w);
// set the new values
for (unsigned i = static_cast<unsigned>(t.size()); i > 0;) {
i--;
unsigned j = m_permutation[tmp_index[i]];
w[j] = t[i];
w.m_index[i] = j;
}
#ifdef Z3DEBUG
// lp_assert(vectors_are_equal<L>(deb_w, w.m_data, row_count()));
// delete [] deb_w;
#endif
}
template <typename T, typename X>
void permutation_matrix<T, X>::apply_reverse_from_left_to_T(vector<T> & w) {
// the result will be w = p(-1) * w
lp_assert(m_T_buffer.size() == w.size());
unsigned i = size();
while (i-- > 0) {
m_T_buffer[m_permutation[i]] = w[i];
}
i = size();
while (i-- > 0) {
w[i] = m_T_buffer[i];
}
}
template <typename T, typename X>
void permutation_matrix<T, X>::apply_reverse_from_left_to_X(vector<X> & w) {
// the result will be w = p(-1) * w
lp_assert(m_X_buffer.size() == w.size());
unsigned i = size();
while (i-- > 0) {
m_X_buffer[m_permutation[i]] = w[i];
}
i = size();
while (i-- > 0) {
w[i] = m_X_buffer[i];
}
}
template <typename T, typename X>
void permutation_matrix<T, X>::apply_reverse_from_right_to_T(vector<T> & w) {
// the result will be w = w * p(-1)
lp_assert(m_T_buffer.size() == w.size());
unsigned i = size();
while (i-- > 0) {
m_T_buffer[i] = w[m_permutation[i]];
}
i = size();
while (i-- > 0) {
w[i] = m_T_buffer[i];
}
}
template <typename T, typename X>
void permutation_matrix<T, X>::apply_reverse_from_right_to_T(indexed_vector<T> & w) {
// the result will be w = w * p(-1)
#ifdef Z3DEBUG
// vector<T> wcopy(w.m_data);
// apply_reverse_from_right_to_T(wcopy);
#endif
lp_assert(w.is_OK());
vector<T> tmp;
vector<unsigned> tmp_index(w.m_index);
for (auto i : w.m_index) {
tmp.push_back(w[i]);
}
w.clear();
for (unsigned k = 0; k < tmp_index.size(); k++) {
unsigned j = tmp_index[k];
w.set_value(tmp[k], m_rev[j]);
}
// lp_assert(w.is_OK());
// lp_assert(vectors_are_equal(w.m_data, wcopy));
}
template <typename T, typename X>
void permutation_matrix<T, X>::apply_reverse_from_right_to_X(vector<X> & w) {
// the result will be w = w * p(-1)
lp_assert(m_X_buffer.size() == w.size());
unsigned i = size();
while (i-- > 0) {
m_X_buffer[i] = w[m_permutation[i]];
}
i = size();
while (i-- > 0) {
w[i] = m_X_buffer[i];
}
}
template <typename T, typename X> void permutation_matrix<T, X>::transpose_from_left(unsigned i, unsigned j) {
// the result will be this = (i,j)*this
lp_assert(i < size() && j < size() && i != j);
auto pi = m_rev[i];
auto pj = m_rev[j];
set_val(pi, j);
set_val(pj, i);
}
template <typename T, typename X> void permutation_matrix<T, X>::transpose_from_right(unsigned i, unsigned j) {
// the result will be this = this * (i,j)
lp_assert(i < size() && j < size() && i != j);
auto pi = m_permutation[i];
auto pj = m_permutation[j];
set_val(i, pj);
set_val(j, pi);
}
template <typename T, typename X> void permutation_matrix<T, X>::multiply_by_permutation_from_left(permutation_matrix<T, X> & p) {
m_work_array = m_permutation;
lp_assert(p.size() == size());
unsigned i = size();
while (i-- > 0) {
set_val(i, m_work_array[p[i]]); // we have m(P)*m(Q) = m(QP), where m is the matrix of the permutation
}
}
// this is multiplication in the matrix sense
template <typename T, typename X> void permutation_matrix<T, X>::multiply_by_permutation_from_right(permutation_matrix<T, X> & p) {
m_work_array = m_permutation;
lp_assert(p.size() == size());
unsigned i = size();
while (i-- > 0)
set_val(i, p[m_work_array[i]]); // we have m(P)*m(Q) = m(QP), where m is the matrix of the permutation
}
template <typename T, typename X> void permutation_matrix<T, X>::multiply_by_reverse_from_right(permutation_matrix<T, X> & q){ // todo : condensed permutations ?
lp_assert(q.size() == size());
m_work_array = m_permutation;
// the result is this = this*q(-1)
unsigned i = size();
while (i-- > 0) {
set_val(i, q.m_rev[m_work_array[i]]); // we have m(P)*m(Q) = m(QP), where m is the matrix of the permutation
}
}
template <typename T, typename X> void permutation_matrix<T, X>::multiply_by_permutation_reverse_from_left(permutation_matrix<T, X> & r){ // todo : condensed permutations?
// the result is this = r(-1)*this
m_work_array = m_permutation;
// the result is this = this*q(-1)
unsigned i = size();
while (i-- > 0) {
set_val(i, m_work_array[r.m_rev[i]]);
}
}
template <typename T, typename X> bool permutation_matrix<T, X>::is_identity() const {
unsigned i = size();
while (i-- > 0) {
if (m_permutation[i] != i) {
return false;
}
}
return true;
}
}