3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-25 10:05:32 +00:00
z3/src/math/lp/lp_solver_def.h
Lev Nachmanson 33cbd29ed0 mv util/lp to math/lp
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
2020-01-28 10:04:21 -08:00

569 lines
19 KiB
C++

/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
<name>
Abstract:
<abstract>
Author:
Lev Nachmanson (levnach)
Revision History:
--*/
#include <string>
#include <algorithm>
#include "util/vector.h"
#include "math/lp/lp_solver.h"
namespace lp {
template <typename T, typename X> column_info<T> * lp_solver<T, X>::get_or_create_column_info(unsigned column) {
auto it = m_map_from_var_index_to_column_info.find(column);
return (it == m_map_from_var_index_to_column_info.end())? (m_map_from_var_index_to_column_info[column] = new column_info<T>()) : it->second;
}
template <typename T, typename X>
std::string lp_solver<T, X>::get_variable_name(unsigned j) const { // j here is the core solver index
if (!m_settings.m_print_external_var_name)
return std::string("v")+T_to_string(j);
auto it = this->m_core_solver_columns_to_external_columns.find(j);
if (it == this->m_core_solver_columns_to_external_columns.end())
return std::string("x")+T_to_string(j);
unsigned external_j = it->second;
auto t = this->m_map_from_var_index_to_column_info.find(external_j);
if (t == this->m_map_from_var_index_to_column_info.end()) {
return std::string("x") +T_to_string(external_j);
}
return t->second->get_name();
}
template <typename T, typename X> T lp_solver<T, X>::get_column_cost_value(unsigned j, column_info<T> * ci) const {
if (ci->is_fixed()) {
return ci->get_cost() * ci->get_fixed_value();
}
return ci->get_cost() * get_column_value(j);
}
template <typename T, typename X> void lp_solver<T, X>::add_constraint(lp_relation relation, T right_side, unsigned row_index) {
lp_assert(m_constraints.find(row_index) == m_constraints.end());
lp_constraint<T, X> cs(right_side, relation);
m_constraints[row_index] = cs;
}
template <typename T, typename X> void lp_solver<T, X>::give_symbolic_name_to_column(std::string name, unsigned column) {
auto it = m_map_from_var_index_to_column_info.find(column);
column_info<T> *ci;
if (it == m_map_from_var_index_to_column_info.end()){
m_map_from_var_index_to_column_info[column] = ci = new column_info<T>;
} else {
ci = it->second;
}
ci->set_name(name);
m_names_to_columns[name] = column;
}
template <typename T, typename X> T lp_solver<T, X>::get_column_value_by_name(std::string name) const {
auto it = m_names_to_columns.find(name);
if (it == m_names_to_columns.end()) {
std::stringstream s;
s << "get_column_value_by_name " << name;
throw_exception(s.str());
}
return get_column_value(it -> second);
}
// returns -1 if not found
template <typename T, typename X> int lp_solver<T, X>::get_column_index_by_name(std::string name) const {
auto t = m_names_to_columns.find(name);
if (t == m_names_to_columns.end()) {
return -1;
}
return t->second;
}
template <typename T, typename X> lp_solver<T, X>::~lp_solver(){
delete m_A;
for (auto t : m_map_from_var_index_to_column_info) {
delete t.second;
}
}
template <typename T, typename X> void lp_solver<T, X>::flip_costs() {
for (auto t : m_map_from_var_index_to_column_info) {
column_info<T> *ci = t.second;
ci->set_cost(-ci->get_cost());
}
}
template <typename T, typename X> bool lp_solver<T, X>::problem_is_empty() {
for (auto & c : m_A_values)
if (!c.second.empty())
return false;
return true;
}
template <typename T, typename X> void lp_solver<T, X>::scale() {
if (numeric_traits<T>::precise() || m_settings.use_scaling == false) {
m_column_scale.clear();
m_column_scale.resize(m_A->column_count(), one_of_type<T>());
return;
}
T smin = T(m_settings.scaling_minimum);
T smax = T(m_settings.scaling_maximum);
scaler<T, X> scaler(m_b, *m_A, smin, smax, m_column_scale, this->m_settings);
if (!scaler.scale()) {
unscale();
}
}
template <typename T, typename X> void lp_solver<T, X>::print_rows_scale_stats(std::ostream & out) {
out << "rows max" << std::endl;
for (unsigned i = 0; i < m_A->row_count(); i++) {
print_row_scale_stats(i, out);
}
out << std::endl;
}
template <typename T, typename X> void lp_solver<T, X>::print_columns_scale_stats(std::ostream & out) {
out << "columns max" << std::endl;
for (unsigned i = 0; i < m_A->column_count(); i++) {
print_column_scale_stats(i, out);
}
out << std::endl;
}
template <typename T, typename X> void lp_solver<T, X>::print_row_scale_stats(unsigned i, std::ostream & out) {
out << "(" << std::min(m_A->get_min_abs_in_row(i), abs(m_b[i])) << " ";
out << std::max(m_A->get_max_abs_in_row(i), abs(m_b[i])) << ")";
}
template <typename T, typename X> void lp_solver<T, X>::print_column_scale_stats(unsigned j, std::ostream & out) {
out << "(" << m_A->get_min_abs_in_row(j) << " ";
out << m_A->get_max_abs_in_column(j) << ")";
}
template <typename T, typename X> void lp_solver<T, X>::print_scale_stats(std::ostream & out) {
print_rows_scale_stats(out);
print_columns_scale_stats(out);
}
template <typename T, typename X> void lp_solver<T, X>::get_max_abs_in_row(std::unordered_map<unsigned, T> & row_map) {
T ret = numeric_traits<T>::zero();
for (auto jp : row_map) {
T ac = numeric_traits<T>::abs(jp->second);
if (ac > ret) {
ret = ac;
}
}
return ret;
}
template <typename T, typename X> void lp_solver<T, X>::pin_vars_on_row_with_sign(std::unordered_map<unsigned, T> & row, T sign ) {
for (auto t : row) {
unsigned j = t.first;
column_info<T> * ci = m_map_from_var_index_to_column_info[j];
T a = t.second;
if (a * sign > numeric_traits<T>::zero()) {
lp_assert(ci->upper_bound_is_set());
ci->set_fixed_value(ci->get_upper_bound());
} else {
lp_assert(ci->lower_bound_is_set());
ci->set_fixed_value(ci->get_lower_bound());
}
}
}
template <typename T, typename X> bool lp_solver<T, X>::get_minimal_row_value(std::unordered_map<unsigned, T> & row, T & lower_bound) {
lower_bound = numeric_traits<T>::zero();
for (auto & t : row) {
T a = t.second;
column_info<T> * ci = m_map_from_var_index_to_column_info[t.first];
if (a > numeric_traits<T>::zero()) {
if (ci->lower_bound_is_set()) {
lower_bound += ci->get_lower_bound() * a;
} else {
return false;
}
} else {
if (ci->upper_bound_is_set()) {
lower_bound += ci->get_upper_bound() * a;
} else {
return false;
}
}
}
return true;
}
template <typename T, typename X> bool lp_solver<T, X>::get_maximal_row_value(std::unordered_map<unsigned, T> & row, T & lower_bound) {
lower_bound = numeric_traits<T>::zero();
for (auto & t : row) {
T a = t.second;
column_info<T> * ci = m_map_from_var_index_to_column_info[t.first];
if (a < numeric_traits<T>::zero()) {
if (ci->lower_bound_is_set()) {
lower_bound += ci->get_lower_bound() * a;
} else {
return false;
}
} else {
if (ci->upper_bound_is_set()) {
lower_bound += ci->get_upper_bound() * a;
} else {
return false;
}
}
}
return true;
}
template <typename T, typename X> bool lp_solver<T, X>::row_is_zero(std::unordered_map<unsigned, T> & row) {
for (auto & t : row) {
if (!is_zero(t.second))
return false;
}
return true;
}
template <typename T, typename X> bool lp_solver<T, X>::row_e_is_obsolete(std::unordered_map<unsigned, T> & row, unsigned row_index) {
T rs = m_constraints[row_index].m_rs;
if (row_is_zero(row)) {
if (!is_zero(rs))
m_status = lp_status::INFEASIBLE;
return true;
}
T lower_bound;
bool lb = get_minimal_row_value(row, lower_bound);
if (lb) {
T diff = lower_bound - rs;
if (!val_is_smaller_than_eps(diff, m_settings.refactor_tolerance)){
// lower_bound > rs + m_settings.refactor_epsilon
m_status = lp_status::INFEASIBLE;
return true;
}
if (val_is_smaller_than_eps(-diff, m_settings.refactor_tolerance)){
pin_vars_down_on_row(row);
return true;
}
}
T upper_bound;
bool ub = get_maximal_row_value(row, upper_bound);
if (ub) {
T diff = rs - upper_bound;
if (!val_is_smaller_than_eps(diff, m_settings.refactor_tolerance)) {
// upper_bound < rs - m_settings.refactor_tolerance
m_status = lp_status::INFEASIBLE;
return true;
}
if (val_is_smaller_than_eps(-diff, m_settings.refactor_tolerance)){
pin_vars_up_on_row(row);
return true;
}
}
return false;
}
template <typename T, typename X> bool lp_solver<T, X>::row_ge_is_obsolete(std::unordered_map<unsigned, T> & row, unsigned row_index) {
T rs = m_constraints[row_index].m_rs;
if (row_is_zero(row)) {
if (rs > zero_of_type<X>())
m_status = lp_status::INFEASIBLE;
return true;
}
T upper_bound;
if (get_maximal_row_value(row, upper_bound)) {
T diff = rs - upper_bound;
if (!val_is_smaller_than_eps(diff, m_settings.refactor_tolerance)) {
// upper_bound < rs - m_settings.refactor_tolerance
m_status = lp_status::INFEASIBLE;
return true;
}
if (val_is_smaller_than_eps(-diff, m_settings.refactor_tolerance)){
pin_vars_up_on_row(row);
return true;
}
}
return false;
}
template <typename T, typename X> bool lp_solver<T, X>::row_le_is_obsolete(std::unordered_map<unsigned, T> & row, unsigned row_index) {
T lower_bound;
T rs = m_constraints[row_index].m_rs;
if (row_is_zero(row)) {
if (rs < zero_of_type<X>())
m_status = lp_status::INFEASIBLE;
return true;
}
if (get_minimal_row_value(row, lower_bound)) {
T diff = lower_bound - rs;
if (!val_is_smaller_than_eps(diff, m_settings.refactor_tolerance)){
// lower_bound > rs + m_settings.refactor_tolerance
m_status = lp_status::INFEASIBLE;
return true;
}
if (val_is_smaller_than_eps(-diff, m_settings.refactor_tolerance)){
pin_vars_down_on_row(row);
return true;
}
}
return false;
}
// analyse possible max and min values that are derived from var boundaries
// Let us say that the we have a "ge" constraint, and the min value is equal to the rs.
// Then we know what values of the variables are. For each positive coeff of the row it has to be
// the low boundary of the var and for a negative - the upper.
// this routing also pins the variables to the boundaries
template <typename T, typename X> bool lp_solver<T, X>::row_is_obsolete(std::unordered_map<unsigned, T> & row, unsigned row_index ) {
auto & constraint = m_constraints[row_index];
switch (constraint.m_relation) {
case lp_relation::Equal:
return row_e_is_obsolete(row, row_index);
case lp_relation::Greater_or_equal:
return row_ge_is_obsolete(row, row_index);
case lp_relation::Less_or_equal:
return row_le_is_obsolete(row, row_index);
}
lp_unreachable();
return false; // it is unreachable
}
template <typename T, typename X> void lp_solver<T, X>::remove_fixed_or_zero_columns() {
for (auto & i_row : m_A_values) {
remove_fixed_or_zero_columns_from_row(i_row.first, i_row.second);
}
}
template <typename T, typename X> void lp_solver<T, X>::remove_fixed_or_zero_columns_from_row(unsigned i, std::unordered_map<unsigned, T> & row) {
auto & constraint = m_constraints[i];
vector<unsigned> removed;
for (auto & col : row) {
unsigned j = col.first;
lp_assert(m_map_from_var_index_to_column_info.find(j) != m_map_from_var_index_to_column_info.end());
column_info<T> * ci = m_map_from_var_index_to_column_info[j];
if (ci->is_fixed()) {
removed.push_back(j);
T aj = col.second;
constraint.m_rs -= aj * ci->get_fixed_value();
} else {
if (numeric_traits<T>::is_zero(col.second)){
removed.push_back(j);
}
}
}
for (auto j : removed) {
row.erase(j);
}
}
template <typename T, typename X> unsigned lp_solver<T, X>::try_to_remove_some_rows() {
vector<unsigned> rows_to_delete;
for (auto & t : m_A_values) {
if (row_is_obsolete(t.second, t.first)) {
rows_to_delete.push_back(t.first);
}
if (m_status == lp_status::INFEASIBLE) {
return 0;
}
}
if (!rows_to_delete.empty()) {
for (unsigned k : rows_to_delete) {
m_A_values.erase(k);
}
}
remove_fixed_or_zero_columns();
return static_cast<unsigned>(rows_to_delete.size());
}
template <typename T, typename X> void lp_solver<T, X>::cleanup() {
int n = 0; // number of deleted rows
int d;
while ((d = try_to_remove_some_rows() > 0))
n += d;
if (n == 1) {
LP_OUT(m_settings, "deleted one row" << std::endl);
} else if (n) {
LP_OUT(m_settings, "deleted " << n << " rows" << std::endl);
}
}
template <typename T, typename X> void lp_solver<T, X>::map_external_rows_to_core_solver_rows() {
unsigned size = 0;
for (auto & row : m_A_values) {
m_external_rows_to_core_solver_rows[row.first] = size;
m_core_solver_rows_to_external_rows[size] = row.first;
size++;
}
}
template <typename T, typename X> void lp_solver<T, X>::map_external_columns_to_core_solver_columns() {
unsigned size = 0;
for (auto & row : m_A_values) {
for (auto & col : row.second) {
if (col.second == numeric_traits<T>::zero() || m_map_from_var_index_to_column_info[col.first]->is_fixed()) {
throw_exception("found fixed column");
}
unsigned j = col.first;
auto column_info_it = m_map_from_var_index_to_column_info.find(j);
lp_assert(column_info_it != m_map_from_var_index_to_column_info.end());
auto j_column = column_info_it->second->get_column_index();
if (!is_valid(j_column)) { // j is a newcomer
m_map_from_var_index_to_column_info[j]->set_column_index(size);
m_core_solver_columns_to_external_columns[size++] = j;
}
}
}
}
template <typename T, typename X> void lp_solver<T, X>::unscale() {
delete m_A;
m_A = nullptr;
fill_A_from_A_values();
restore_column_scales_to_one();
fill_m_b();
}
template <typename T, typename X> void lp_solver<T, X>::fill_A_from_A_values() {
m_A = new static_matrix<T, X>(static_cast<unsigned>(m_A_values.size()), number_of_core_structurals());
for (auto & t : m_A_values) {
auto row_it = m_external_rows_to_core_solver_rows.find(t.first);
lp_assert(row_it != m_external_rows_to_core_solver_rows.end());
unsigned row = row_it->second;
for (auto k : t.second) {
auto column_info_it = m_map_from_var_index_to_column_info.find(k.first);
lp_assert(column_info_it != m_map_from_var_index_to_column_info.end());
column_info<T> *ci = column_info_it->second;
unsigned col = ci->get_column_index();
lp_assert(is_valid(col));
bool col_is_flipped = m_map_from_var_index_to_column_info[k.first]->is_flipped();
if (!col_is_flipped) {
(*m_A)(row, col) = k.second;
} else {
(*m_A)(row, col) = - k.second;
}
}
}
}
template <typename T, typename X> void lp_solver<T, X>::fill_matrix_A_and_init_right_side() {
map_external_rows_to_core_solver_rows();
map_external_columns_to_core_solver_columns();
lp_assert(m_A == nullptr);
fill_A_from_A_values();
m_b.resize(m_A->row_count());
}
template <typename T, typename X> void lp_solver<T, X>::count_slacks_and_artificials() {
for (int i = row_count() - 1; i >= 0; i--) {
count_slacks_and_artificials_for_row(i);
}
}
template <typename T, typename X> void lp_solver<T, X>::count_slacks_and_artificials_for_row(unsigned i) {
lp_assert(this->m_constraints.find(this->m_core_solver_rows_to_external_rows[i]) != this->m_constraints.end());
auto & constraint = this->m_constraints[this->m_core_solver_rows_to_external_rows[i]];
switch (constraint.m_relation) {
case Equal:
m_artificials++;
break;
case Greater_or_equal:
m_slacks++;
if (this->m_b[i] > 0) {
m_artificials++;
}
break;
case Less_or_equal:
m_slacks++;
if (this->m_b[i] < 0) {
m_artificials++;
}
break;
}
}
template <typename T, typename X> T lp_solver<T, X>::lower_bound_shift_for_row(unsigned i) {
T ret = numeric_traits<T>::zero();
auto row = this->m_A_values.find(i);
if (row == this->m_A_values.end()) {
throw_exception("cannot find row");
}
for (auto col : row->second) {
ret += col.second * this->m_map_from_var_index_to_column_info[col.first]->get_shift();
}
return ret;
}
template <typename T, typename X> void lp_solver<T, X>::fill_m_b() {
for (int i = this->row_count() - 1; i >= 0; i--) {
lp_assert(this->m_constraints.find(this->m_core_solver_rows_to_external_rows[i]) != this->m_constraints.end());
unsigned external_i = this->m_core_solver_rows_to_external_rows[i];
auto & constraint = this->m_constraints[external_i];
this->m_b[i] = constraint.m_rs - lower_bound_shift_for_row(external_i);
}
}
template <typename T, typename X> T lp_solver<T, X>::get_column_value_with_core_solver(unsigned column, lp_core_solver_base<T, X> * core_solver) const {
auto cit = this->m_map_from_var_index_to_column_info.find(column);
if (cit == this->m_map_from_var_index_to_column_info.end()) {
return numeric_traits<T>::zero();
}
column_info<T> * ci = cit->second;
if (ci->is_fixed()) {
return ci->get_fixed_value();
}
unsigned cj = ci->get_column_index();
if (cj != static_cast<unsigned>(-1)) {
T v = core_solver->get_var_value(cj) * this->m_column_scale[cj];
if (ci->is_free()) {
return v;
}
if (!ci->is_flipped()) {
return v + ci->get_lower_bound();
}
// the flipped case when there is only upper bound
return -v + ci->get_upper_bound(); //
}
return numeric_traits<T>::zero(); // returns zero for out of boundary columns
}
template <typename T, typename X> void lp_solver<T, X>::set_scaled_cost(unsigned j) {
// grab original costs but modify it with the column scales
lp_assert(j < this->m_column_scale.size());
column_info<T> * ci = this->m_map_from_var_index_to_column_info[this->m_core_solver_columns_to_external_columns[j]];
T cost = ci->get_cost();
if (ci->is_flipped()){
cost *= T(-1);
}
lp_assert(ci->is_fixed() == false);
this->m_costs[j] = cost * this->m_column_scale[j];
}
}