3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-12-25 05:26:51 +00:00
z3/src/math/lp/nra_solver.cpp
copilot-swe-agent[bot] 24769b5ac0 Remove UNREACHABLE() macros from nra_solver.cpp constraint validation
Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>
2025-12-16 23:34:55 +00:00

755 lines
25 KiB
C++

/*
Copyright (c) 2017 Microsoft Corporation
Author: Nikolaj Bjorner, Lev Nachmanson
*/
#ifndef SINGLE_THREAD
#include <thread>
#endif
#include <fstream>
#include "math/lp/lar_solver.h"
#include "math/lp/nra_solver.h"
#include "math/lp/nla_coi.h"
#include "nlsat/nlsat_solver.h"
#include "math/polynomial/polynomial.h"
#include "math/polynomial/algebraic_numbers.h"
#include "util/map.h"
#include "util/uint_set.h"
#include "math/lp/nla_core.h"
#include "params/smt_params_helper.hpp"
namespace nra {
typedef nla::mon_eq mon_eq;
typedef nla::variable_map_type variable_map_type;
struct solver::imp {
lp::lar_solver& lra;
reslimit& m_limit;
params_ref m_params;
u_map<polynomial::var> m_lp2nl; // map from lar_solver variables to nlsat::solver variables
scoped_ptr<nlsat::solver> m_nlsat;
scoped_ptr<scoped_anum_vector> m_values; // values provided by LRA solver
scoped_ptr<scoped_anum> m_tmp1, m_tmp2;
nla::coi m_coi;
nla::core& m_nla_core;
imp(lp::lar_solver& s, reslimit& lim, params_ref const& p, nla::core& nla_core):
lra(s),
m_limit(lim),
m_params(p),
m_coi(nla_core),
m_nla_core(nla_core) {}
bool need_check() {
return m_nla_core.m_to_refine.size() != 0;
}
void reset() {
m_values = nullptr;
m_tmp1 = nullptr; m_tmp2 = nullptr;
m_nlsat = alloc(nlsat::solver, m_limit, m_params, false);
m_values = alloc(scoped_anum_vector, am());
m_lp2nl.reset();
}
// Create polynomial definition for variable v used in setup_assignment_solver.
// Side-effects: updates m_vars2mon when v is a monic variable.
void mk_definition(unsigned v, polynomial_ref_vector &definitions, vector<rational>& denominators) {
auto &pm = m_nlsat->pm();
polynomial::polynomial_ref p(pm);
rational den(1);
if (m_nla_core.emons().is_monic_var(v)) {
auto const &m = m_nla_core.emons()[v];
for (auto v2 : m.vars()) {
den = lcm(denominators[v2], den);
polynomial_ref pw(definitions.get(v2), m_nlsat->pm());
if (!p)
p = pw;
else
p = p * pw;
}
}
else if (lra.column_has_term(v)) {
for (auto const &[w, coeff] : lra.get_term(v)) {
den = lcm(denominators[w], lcm(denominator(coeff), den));
}
for (auto const &[w, coeff] : lra.get_term(v)) {
auto coeff1 = den * coeff;
polynomial_ref pw(definitions.get(w), m_nlsat->pm());
if (!p)
p = constant(coeff1) * pw;
else
p = p + (constant(coeff1) * pw);
}
}
else {
p = pm.mk_polynomial(lp2nl(v)); // nlsat var index equals v (verified above when created)
}
definitions.push_back(p);
denominators.push_back(den);
}
void setup_solver_poly() {
m_coi.init();
auto &pm = m_nlsat->pm();
polynomial_ref_vector definitions(pm);
vector<rational> denominators;
for (unsigned v = 0; v < lra.number_of_vars(); ++v) {
if (m_coi.vars().contains(v)) {
auto j = m_nlsat->mk_var(lra.var_is_int(v));
m_lp2nl.insert(v, j); // we don't really need this. It is going to be the identify map.
mk_definition(v, definitions, denominators);
}
else {
definitions.push_back(nullptr);
denominators.push_back(rational(0));
}
}
// we rely on that all information encoded into the tableau is present as a constraint.
for (auto ci : m_coi.constraints()) {
auto &c = lra.constraints()[ci];
auto &pm = m_nlsat->pm();
auto k = c.kind();
auto rhs = c.rhs();
auto lhs = c.coeffs();
rational den = denominator(rhs);
for (auto [coeff, v] : lhs)
den = lcm(lcm(den, denominator(coeff)), denominators[v]);
polynomial::polynomial_ref p(pm);
p = pm.mk_const(-den * rhs);
for (auto [coeff, v] : lhs) {
polynomial_ref poly(pm);
poly = definitions.get(v);
poly = poly * constant(den * coeff / denominators[v]);
p = p + poly;
}
add_constraint(p, ci, k);
}
definitions.reset();
}
void setup_solver_terms() {
m_coi.init();
// add linear inequalities from lra_solver
for (auto ci : m_coi.constraints())
add_constraint(ci);
// add polynomial definitions.
for (auto const &m : m_coi.mons())
add_monic_eq(m_nla_core.emons()[m]);
// add term definitions.
for (unsigned i : m_coi.terms())
add_term(i);
}
polynomial::polynomial_ref sub(polynomial::polynomial *a, polynomial::polynomial *b) {
return polynomial_ref(m_nlsat->pm().sub(a, b), m_nlsat->pm());
}
polynomial::polynomial_ref mul(polynomial::polynomial *a, polynomial::polynomial *b) {
return polynomial_ref(m_nlsat->pm().mul(a, b), m_nlsat->pm());
}
polynomial::polynomial_ref var(lp::lpvar v) {
return polynomial_ref(m_nlsat->pm().mk_polynomial(lp2nl(v)), m_nlsat->pm());
}
polynomial::polynomial_ref constant(rational const& r) {
return polynomial_ref(m_nlsat->pm().mk_const(r), m_nlsat->pm());
}
/**
\brief one-shot nlsat check.
A one shot checker is the least functionality that can
enable non-linear reasoning.
In addition to checking satisfiability we would also need
to identify equalities in the model that should be assumed
with the remaining solver.
TBD: use partial model from lra_solver to prime the state of nlsat_solver.
TBD: explore more incremental ways of applying nlsat (using assumptions)
*/
lbool check() {
SASSERT(need_check());
reset();
vector<nlsat::assumption, false> core;
smt_params_helper p(m_params);
setup_solver_poly();
TRACE(nra, m_nlsat->display(tout));
if (p.arith_nl_log()) {
static unsigned id = 0;
std::stringstream strm;
#ifndef SINGLE_THREAD
std::thread::id this_id = std::this_thread::get_id();
strm << "nla_" << this_id << "." << (++id) << ".smt2";
#else
strm << "nla_" << (++id) << ".smt2";
#endif
std::ofstream out(strm.str());
m_nlsat->display_smt2(out);
out << "(check-sat)\n";
out.close();
}
lbool r = l_undef;
statistics& st = m_nla_core.lp_settings().stats().m_st;
try {
r = m_nlsat->check();
}
catch (z3_exception&) {
if (m_limit.is_canceled()) {
r = l_undef;
}
else {
m_nlsat->collect_statistics(st);
throw;
}
}
m_nlsat->collect_statistics(st);
TRACE(nra, tout << "nra result " << r << "\n");
CTRACE(nra, false,
m_nlsat->display(tout << r << "\n");
display(tout);
for (auto [j, x] : m_lp2nl) tout << "j" << j << " := x" << x << "\n";);
switch (r) {
case l_true:
m_nlsat->restore_order();
m_nla_core.set_use_nra_model(true);
lra.init_model();
for (lp::constraint_index ci : lra.constraints().indices())
if (!check_constraint(ci)) {
IF_VERBOSE(0, verbose_stream() << "constraint " << ci << " violated\n";
lra.constraints().display(verbose_stream()));
return l_undef;
}
for (auto const &m : m_nla_core.emons()) {
if (!check_monic(m)) {
IF_VERBOSE(0, verbose_stream() << "monic " << m << " violated\n";
lra.constraints().display(verbose_stream()));
return l_undef;
}
}
break;
case l_false: {
lp::explanation ex;
m_nlsat->get_core(core);
nla::lemma_builder lemma(m_nla_core, __FUNCTION__);
for (auto c : core) {
unsigned idx = static_cast<unsigned>(static_cast<imp *>(c) - this);
ex.push_back(idx);
}
lemma &= ex;
m_nla_core.set_use_nra_model(true);
TRACE(nra, tout << lemma << "\n");
break;
}
case l_undef:
break;
}
return r;
}
void add_monic_eq_bound(mon_eq const& m) {
if (!lra.column_has_lower_bound(m.var()) &&
!lra.column_has_upper_bound(m.var()))
return;
polynomial::manager& pm = m_nlsat->pm();
svector<polynomial::var> vars;
for (auto v : m.vars())
vars.push_back(lp2nl(v));
auto v = m.var();
polynomial::monomial_ref m1(pm.mk_monomial(vars.size(), vars.data()), pm);
polynomial::monomial * mls[1] = { m1 };
polynomial::scoped_numeral_vector coeffs(pm.m());
coeffs.push_back(mpz(1));
polynomial::polynomial_ref p(pm.mk_polynomial(1, coeffs.data(), mls), pm);
if (lra.column_has_lower_bound(v))
add_lb_p(lra.get_lower_bound(v), p, lra.get_column_lower_bound_witness(v));
if (lra.column_has_upper_bound(v))
add_ub_p(lra.get_upper_bound(v), p, lra.get_column_upper_bound_witness(v));
}
void add_monic_eq(mon_eq const& m) {
polynomial::manager& pm = m_nlsat->pm();
svector<polynomial::var> vars;
for (auto v : m.vars())
vars.push_back(lp2nl(v));
polynomial::monomial_ref m1(pm.mk_monomial(vars.size(), vars.data()), pm);
polynomial::monomial_ref m2(pm.mk_monomial(lp2nl(m.var()), 1), pm);
polynomial::monomial * mls[2] = { m1, m2 };
polynomial::scoped_numeral_vector coeffs(pm.m());
coeffs.push_back(mpz(1));
coeffs.push_back(mpz(-1));
polynomial::polynomial_ref p(pm.mk_polynomial(2, coeffs.data(), mls), pm);
auto lit = mk_literal(p.get(), lp::lconstraint_kind::EQ);
m_nlsat->mk_clause(1, &lit, nullptr);
}
nlsat::literal mk_literal(polynomial::polynomial *p, lp::lconstraint_kind k) {
polynomial::polynomial *ps[1] = { p };
bool is_even[1] = { false };
switch (k) {
case lp::lconstraint_kind::LE: return ~m_nlsat->mk_ineq_literal(nlsat::atom::kind::GT, 1, ps, is_even);
case lp::lconstraint_kind::GE: return ~m_nlsat->mk_ineq_literal(nlsat::atom::kind::LT, 1, ps, is_even);
case lp::lconstraint_kind::LT: return m_nlsat->mk_ineq_literal(nlsat::atom::kind::LT, 1, ps, is_even);
case lp::lconstraint_kind::GT: return m_nlsat->mk_ineq_literal(nlsat::atom::kind::GT, 1, ps, is_even);
case lp::lconstraint_kind::EQ: return m_nlsat->mk_ineq_literal(nlsat::atom::kind::EQ, 1, ps, is_even);
default: UNREACHABLE(); // unreachable
}
throw default_exception("uexpected operator");
}
void add_constraint(unsigned idx) {
auto& c = lra.constraints()[idx];
auto& pm = m_nlsat->pm();
auto k = c.kind();
auto rhs = c.rhs();
auto lhs = c.coeffs();
auto sz = lhs.size();
svector<polynomial::var> vars;
rational den = denominator(rhs);
for (auto [coeff, v] : lhs) {
vars.push_back(lp2nl(v));
den = lcm(den, denominator(coeff));
}
vector<rational> coeffs;
for (auto kv : lhs) {
coeffs.push_back(den * kv.first);
}
rhs *= den;
polynomial::polynomial_ref p(pm.mk_linear(sz, coeffs.data(), vars.data(), -rhs), pm);
nlsat::literal lit = mk_literal(p.get(), k);
nlsat::assumption a = this + idx;
m_nlsat->mk_clause(1, &lit, a);
}
nlsat::literal add_constraint(polynomial::polynomial *p, unsigned idx, lp::lconstraint_kind k) {
polynomial::polynomial *ps[1] = {p};
bool is_even[1] = {false};
nlsat::literal lit;
nlsat::assumption a = this + idx;
switch (k) {
case lp::lconstraint_kind::LE: lit = ~m_nlsat->mk_ineq_literal(nlsat::atom::kind::GT, 1, ps, is_even); break;
case lp::lconstraint_kind::GE: lit = ~m_nlsat->mk_ineq_literal(nlsat::atom::kind::LT, 1, ps, is_even); break;
case lp::lconstraint_kind::LT: lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::LT, 1, ps, is_even); break;
case lp::lconstraint_kind::GT: lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::GT, 1, ps, is_even); break;
case lp::lconstraint_kind::EQ: lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::EQ, 1, ps, is_even); break;
default: UNREACHABLE(); // unreachable
}
m_nlsat->mk_clause(1, &lit, a);
return lit;
}
bool check_monic(mon_eq const& m) {
scoped_anum val1(am()), val2(am());
am().set(val1, value(m.var()));
am().set(val2, rational::one().to_mpq());
for (auto v : m.vars())
am().mul(val2, value(v), val2);
return am().eq(val1, val2);
}
bool check_constraint(unsigned idx) {
auto& c = lra.constraints()[idx];
auto k = c.kind();
auto offset = -c.rhs();
auto lhs = c.coeffs();
scoped_anum val(am()), mon(am());
am().set(val, offset.to_mpq());
for (auto [coeff, v] : lhs) {
am().set(mon, coeff.to_mpq());
am().mul(mon, value(v), mon);
am().add(val, mon, val);
}
am().set(mon, rational::zero().to_mpq());
switch (k) {
case lp::lconstraint_kind::LE:
return am().le(val, mon);
case lp::lconstraint_kind::GE:
return am().ge(val, mon);
case lp::lconstraint_kind::LT:
return am().lt(val, mon);
case lp::lconstraint_kind::GT:
return am().gt(val, mon);
case lp::lconstraint_kind::EQ:
return am().eq(val, mon);
default:
UNREACHABLE();
}
return false;
}
lbool check(dd::solver::equation_vector const& eqs) {
reset();
for (auto const& eq : eqs)
add_eq(*eq);
for (auto const& m : m_nla_core.emons())
if (any_of(m.vars(), [&](lp::lpvar v) { return m_lp2nl.contains(v); }))
add_monic_eq_bound(m);
for (unsigned i : m_coi.terms())
add_term(i);
for (auto const& [v, w] : m_lp2nl) {
if (lra.column_has_lower_bound(v))
add_lb(lra.get_lower_bound(v), w, lra.get_column_lower_bound_witness(v));
if (lra.column_has_upper_bound(v))
add_ub(lra.get_upper_bound(v), w, lra.get_column_upper_bound_witness(v));
}
lbool r = l_undef;
statistics& st = m_nla_core.lp_settings().stats().m_st;
try {
r = m_nlsat->check();
}
catch (z3_exception&) {
if (m_limit.is_canceled()) {
r = l_undef;
}
else {
m_nlsat->collect_statistics(st);
throw;
}
}
m_nlsat->collect_statistics(st);
switch (r) {
case l_true:
m_nlsat->restore_order();
m_nla_core.set_use_nra_model(true);
lra.init_model();
for (lp::constraint_index ci : lra.constraints().indices())
if (!check_constraint(ci))
return l_undef;
for (auto const& m : m_nla_core.emons())
if (!check_monic(m))
return l_undef;
break;
case l_false: {
lp::explanation ex;
vector<nlsat::assumption, false> core;
m_nlsat->get_core(core);
u_dependency_manager dm;
vector<unsigned, false> lv;
for (auto c : core)
dm.linearize(static_cast<u_dependency*>(c), lv);
for (auto ci : lv)
ex.push_back(ci);
nla::lemma_builder lemma(m_nla_core, __FUNCTION__);
lemma &= ex;
TRACE(nra, tout << lemma << "\n");
break;
}
case l_undef:
break;
}
return r;
}
lbool check(vector<dd::pdd> const& eqs) {
reset();
for (auto const& eq : eqs)
add_eq(eq);
for (auto const& m : m_nla_core.emons())
add_monic_eq(m);
for (auto const& [v, w] : m_lp2nl) {
if (lra.column_has_lower_bound(v))
add_lb(lra.get_lower_bound(v), w);
if (lra.column_has_upper_bound(v))
add_ub(lra.get_upper_bound(v), w);
}
lbool r = l_undef;
try {
r = m_nlsat->check();
}
catch (z3_exception&) {
if (m_limit.is_canceled()) {
r = l_undef;
}
else {
throw;
}
}
if (r == l_true)
return r;
IF_VERBOSE(0, verbose_stream() << "check-nra " << r << "\n";
m_nlsat->display(verbose_stream());
for (auto const& [v, w] : m_lp2nl) {
if (lra.column_has_lower_bound(v))
verbose_stream() << "x" << w << " >= " << lra.get_lower_bound(v) << "\n";
if (lra.column_has_upper_bound(v))
verbose_stream() << "x" << w << " <= " << lra.get_upper_bound(v) << "\n";
});
return r;
}
void add_eq(dd::solver::equation const& eq) {
add_eq(eq.poly(), eq.dep());
}
void add_eq(dd::pdd const& eq, nlsat::assumption a = nullptr) {
dd::pdd normeq = eq;
rational lc(1);
for (auto const& [c, m] : eq)
lc = lcm(denominator(c), lc);
if (lc != 1)
normeq *= lc;
polynomial::manager& pm = m_nlsat->pm();
polynomial::polynomial_ref p(pdd2polynomial(normeq), pm);
bool is_even[1] = {false};
polynomial::polynomial* ps[1] = {p};
nlsat::literal lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::EQ, 1, ps, is_even);
m_nlsat->mk_clause(1, &lit, a);
}
void add_lb(lp::impq const& b, unsigned w, nlsat::assumption a = nullptr) {
polynomial::manager& pm = m_nlsat->pm();
polynomial::polynomial_ref p(pm.mk_polynomial(w), pm);
add_lb_p(b, p, a);
}
void add_ub(lp::impq const& b, unsigned w, nlsat::assumption a = nullptr) {
polynomial::manager& pm = m_nlsat->pm();
polynomial::polynomial_ref p(pm.mk_polynomial(w), pm);
add_ub_p(b, p, a);
}
void add_lb_p(lp::impq const& b, polynomial::polynomial* p, nlsat::assumption a = nullptr) {
add_bound_p(b.x, p, b.y <= 0, b.y > 0 ? nlsat::atom::kind::GT : nlsat::atom::kind::LT, a);
}
void add_ub_p(lp::impq const& b, polynomial::polynomial* p, nlsat::assumption a = nullptr) {
add_bound_p(b.x, p, b.y >= 0, b.y < 0 ? nlsat::atom::kind::LT : nlsat::atom::kind::GT, a);
}
// w - bound < 0
// w - bound > 0
void add_bound_p(lp::mpq const& bound, polynomial::polynomial* p1, bool neg, nlsat::atom::kind k, nlsat::assumption a = nullptr) {
polynomial::manager& pm = m_nlsat->pm();
polynomial::polynomial_ref p2(pm.mk_const(bound), pm);
polynomial::polynomial_ref p(pm.sub(p1, p2), pm);
polynomial::polynomial* ps[1] = {p};
bool is_even[1] = {false};
nlsat::literal lit = m_nlsat->mk_ineq_literal(k, 1, ps, is_even);
if (neg)
lit.neg();
m_nlsat->mk_clause(1, &lit, a);
}
void add_bound(lp::mpq const& bound, unsigned w, bool neg, nlsat::atom::kind k, nlsat::assumption a = nullptr) {
polynomial::manager& pm = m_nlsat->pm();
polynomial::polynomial_ref p(pm.mk_polynomial(w), pm);
add_bound_p(bound, p, neg, k, a);
}
polynomial::polynomial* pdd2polynomial(dd::pdd const& p) {
polynomial::manager& pm = m_nlsat->pm();
if (p.is_val())
return pm.mk_const(p.val());
polynomial::polynomial_ref lo(pdd2polynomial(p.lo()), pm);
polynomial::polynomial_ref hi(pdd2polynomial(p.hi()), pm);
unsigned w, v = p.var();
if (!m_lp2nl.find(v, w)) {
w = m_nlsat->mk_var(is_int(v));
m_lp2nl.insert(v, w);
}
polynomial::polynomial_ref vp(pm.mk_polynomial(w, 1), pm);
polynomial::polynomial_ref mp(pm.mul(vp, hi), pm);
return pm.add(lo, mp);
}
bool is_int(lp::lpvar v) {
return lra.var_is_int(v);
}
polynomial::var lp2nl(lp::lpvar v) {
polynomial::var r;
if (!m_lp2nl.find(v, r)) {
r = m_nlsat->mk_var(is_int(v));
m_lp2nl.insert(v, r);
if (!m_coi.terms().contains(v) && lra.column_has_term(v)) {
m_coi.terms().insert(v);
}
}
return r;
}
//
void add_term(unsigned term_column) {
const lp::lar_term& t = lra.get_term(term_column);
// code that creates a polynomial equality between the linear coefficients and
// variable representing the term.
svector<polynomial::var> vars;
rational den(1);
for (lp::lar_term::ival kv : t) {
vars.push_back(lp2nl(kv.j()));
den = lcm(den, denominator(kv.coeff()));
}
vars.push_back(lp2nl(term_column));
vector<rational> coeffs;
for (auto kv : t) {
coeffs.push_back(den * kv.coeff());
}
coeffs.push_back(-den);
polynomial::manager& pm = m_nlsat->pm();
polynomial::polynomial_ref p(pm.mk_linear(coeffs.size(), coeffs.data(), vars.data(), rational(0)), pm);
polynomial::polynomial* ps[1] = {p};
bool is_even[1] = {false};
nlsat::literal lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::EQ, 1, ps, is_even);
m_nlsat->mk_clause(1, &lit, nullptr);
}
nlsat::anum const &value(lp::lpvar v) {
init_values(v + 1);
return (*m_values)[v];
}
void init_values(unsigned sz) {
if (m_values->size() >= sz)
return;
unsigned w;
scoped_anum a(am());
for (unsigned v = m_values->size(); v < sz; ++v) {
if (m_nla_core.emons().is_monic_var(v)) {
am().set(a, 1);
auto &m = m_nla_core.emon(v);
for (auto x : m.vars())
am().mul(a, (*m_values)[x], a);
m_values->push_back(a);
}
else if (lra.column_has_term(v)) {
scoped_anum b(am());
am().set(a, 0);
for (auto const &[w, coeff] : lra.get_term(v)) {
am().set(b, coeff.to_mpq());
am().mul(b, (*m_values)[w], b);
am().add(a, b, a);
}
m_values->push_back(a);
}
else if (m_lp2nl.find(v, w)) {
m_values->push_back(m_nlsat->value(w));
}
else {
am().set(a, m_nla_core.val(v).to_mpq());
m_values->push_back(a);
}
}
}
void set_value(lp::lpvar v, rational const& value) {
if (!m_values)
m_values = alloc(scoped_anum_vector, am());
scoped_anum a(am());
am().set(a, value.to_mpq());
while (m_values->size() <= v)
m_values->push_back(a);
am().set((*m_values)[v], a);
}
nlsat::anum_manager& am() {
return m_nlsat->am();
}
scoped_anum& tmp1() {
if (!m_tmp1)
m_tmp1 = alloc(scoped_anum, am());
return *m_tmp1;
}
scoped_anum& tmp2() {
if (!m_tmp2)
m_tmp2 = alloc(scoped_anum, am());
return *m_tmp2;
}
void updt_params(params_ref& p) {
m_params.append(p);
}
std::ostream& display(std::ostream& out) const {
for (auto m : m_nla_core.emons()) {
out << "j" << m.var() << " = ";
for (auto v : m.vars()) {
out << "j" << v << " ";
}
out << "\n";
}
return out;
}
};
solver::solver(lp::lar_solver& s, reslimit& lim, nla::core & nla_core, params_ref const& p) {
m_imp = alloc(imp, s, lim, p, nla_core);
}
solver::~solver() {
dealloc(m_imp);
}
lbool solver::check() {
return m_imp->check();
}
lbool solver::check(vector<dd::pdd> const& eqs) {
return m_imp->check(eqs);
}
lbool solver::check(dd::solver::equation_vector const& eqs) {
return m_imp->check(eqs);
}
bool solver::need_check() {
return m_imp->need_check();
}
std::ostream& solver::display(std::ostream& out) const {
return m_imp->display(out);
}
nlsat::anum const& solver::value(lp::lpvar v) {
return m_imp->value(v);
}
nlsat::anum_manager& solver::am() {
return m_imp->am();
}
scoped_anum& solver::tmp1() { return m_imp->tmp1(); }
scoped_anum& solver::tmp2() { return m_imp->tmp2(); }
void solver::updt_params(params_ref& p) {
m_imp->updt_params(p);
}
void solver::set_value(lp::lpvar v, rational const& value) {
m_imp->set_value(v, value);
}
}